從技術(shù)原理來看,該設(shè)備構(gòu)建了一套完整的 “熱信號(hào)捕捉 - 解析 - 成像” 體系。其搭載的高性能探測(cè)器(如 RTTLIT P20 采用的 100Hz 高頻深制冷型紅外探測(cè)器)能敏銳捕捉中波紅外波段的熱輻射,配合 InGaAs 微光顯微鏡模塊,可同時(shí)實(shí)現(xiàn)熱信號(hào)與光子發(fā)射的同步觀測(cè)。在檢測(cè)過程中,設(shè)備先通過熱紅外顯微鏡快速鎖定可疑區(qū)域,再啟動(dòng) RTTLIT 系統(tǒng)的鎖相功能:施加周期性電信號(hào)激勵(lì)后,缺陷會(huì)產(chǎn)生與激勵(lì)頻率同步的微弱熱響應(yīng),鎖相模塊過濾掉環(huán)境噪聲,將原本被掩蓋的熱信號(hào)放大并成像。這種 “先定位、再聚焦” 的模式,既保證了檢測(cè)效率,又突破了傳統(tǒng)設(shè)備對(duì)微弱信號(hào)的檢測(cè)極限。鎖相檢測(cè)模塊功能是通過與電激勵(lì)信號(hào)的同步鎖相處理,從熱像序列中提取與激勵(lì)頻率一致的溫度波動(dòng)分量。缺陷定位鎖相紅外熱成像系統(tǒng)按需定制
電激勵(lì)的鎖相熱成像系統(tǒng)在電子產(chǎn)業(yè)的電子漿料檢測(cè)中有用武之地,為電子漿料的質(zhì)量控制提供了重要手段,確保印刷線路的性能。電子漿料是用于印刷電子線路、電極等的關(guān)鍵材料,其導(dǎo)電性、均勻性和附著力直接影響印刷線路的性能和可靠性。電子漿料若存在顆粒團(tuán)聚、成分不均、氣泡等缺陷,會(huì)導(dǎo)致印刷線路的電阻增大、導(dǎo)電性能下降,甚至出現(xiàn)線路斷路。通過對(duì)印刷有電子漿料的基板施加電激勵(lì),電流會(huì)沿著漿料線路流動(dòng),缺陷處由于電阻異常,會(huì)產(chǎn)生局部溫度升高。鎖相熱成像系統(tǒng)能夠檢測(cè)到這些溫度差異,并通過分析溫度場(chǎng)的分布,評(píng)估電子漿料的質(zhì)量。例如,在檢測(cè)太陽能電池板的銀漿電極時(shí),系統(tǒng)可以發(fā)現(xiàn)因銀漿成分不均導(dǎo)致的電阻異常區(qū)域,這些區(qū)域會(huì)影響電池板的發(fā)電效率。檢測(cè)結(jié)果為電子漿料生產(chǎn)企業(yè)提供了質(zhì)量反饋,幫助企業(yè)優(yōu)化漿料配方和生產(chǎn)工藝,提升電子產(chǎn)業(yè)相關(guān)產(chǎn)品的生產(chǎn)質(zhì)量。國產(chǎn)平替鎖相紅外熱成像系統(tǒng)P10鎖相熱紅外電激勵(lì)成像主動(dòng)加熱,適用于定量和深層缺陷檢測(cè),被動(dòng)式檢測(cè)物體自身溫度變化,用于定性檢測(cè)。
這款一體化設(shè)備的核心競(jìng)爭(zhēng)力,在于打破了兩種技術(shù)的應(yīng)用邊界。熱紅外顯微鏡擅長(zhǎng)微觀尺度的熱分布成像,能通過高倍率光學(xué)系統(tǒng)捕捉芯片表面微米級(jí)的溫度差異;鎖相紅外熱成像系統(tǒng)則依托鎖相技術(shù),可從環(huán)境噪聲中提取微弱的周期性熱信號(hào),實(shí)現(xiàn)納米級(jí)缺陷的精細(xì)定位。致晟光電通過硬件集成與算法優(yōu)化,讓兩者形成 “1+1>2” 的協(xié)同效應(yīng) —— 既保留熱紅外顯微鏡的微觀觀測(cè)能力,又賦予其鎖相技術(shù)的微弱信號(hào)檢測(cè)優(yōu)勢(shì),無需在兩種設(shè)備間切換即可完成從宏觀掃描到微觀定位的全流程分析。
電激勵(lì)參數(shù)的實(shí)時(shí)監(jiān)控對(duì)于鎖相熱成像系統(tǒng)在電子產(chǎn)業(yè)檢測(cè)中的準(zhǔn)確性至關(guān)重要,是保障檢測(cè)結(jié)果可靠性的關(guān)鍵環(huán)節(jié)。在電子元件檢測(cè)過程中,電激勵(lì)的電流大小、頻率穩(wěn)定性等參數(shù)可能會(huì)受到電網(wǎng)波動(dòng)、環(huán)境溫度變化等因素的影響而發(fā)生微小波動(dòng),這些波動(dòng)看似細(xì)微,卻可能對(duì)檢測(cè)結(jié)果產(chǎn)生干擾,尤其是對(duì)于高精度電子元件的檢測(cè)。通過實(shí)時(shí)監(jiān)控系統(tǒng)對(duì)電激勵(lì)參數(shù)進(jìn)行持續(xù)監(jiān)測(cè),并將監(jiān)測(cè)數(shù)據(jù)實(shí)時(shí)反饋給控制系統(tǒng),可及時(shí)調(diào)整激勵(lì)源的輸出,確保電流、頻率等參數(shù)始終穩(wěn)定在預(yù)設(shè)范圍內(nèi)。例如,在檢測(cè)高精度 ADC(模數(shù)轉(zhuǎn)換)芯片時(shí),其內(nèi)部電路對(duì)電激勵(lì)的變化極為敏感,即使是 0.1% 的電流波動(dòng),也可能導(dǎo)致芯片內(nèi)部溫度分布出現(xiàn)異常,干擾對(duì)真實(shí)缺陷的判斷。而實(shí)時(shí)監(jiān)控系統(tǒng)能將參數(shù)波動(dòng)控制在 0.01% 以內(nèi),有效保障了檢測(cè)的準(zhǔn)確性,為電子元件的質(zhì)量檢測(cè)提供了穩(wěn)定可靠的技術(shù)環(huán)境。鎖相熱成像系統(tǒng)提升電激勵(lì)檢測(cè)的缺陷識(shí)別率。
光束誘導(dǎo)電阻變化(OBIRCH)功能與微光顯微鏡(EMMI)技術(shù)常被集成于同一檢測(cè)系統(tǒng),合稱為光發(fā)射顯微鏡(PEM,PhotoEmissionMicroscope)。二者在原理與應(yīng)用上形成巧妙互補(bǔ),能夠協(xié)同應(yīng)對(duì)集成電路中絕大多數(shù)失效模式,大幅提升失效分析的全面性與效率。OBIRCH技術(shù)的獨(dú)特優(yōu)勢(shì)在于,即便失效點(diǎn)被金屬層覆蓋形成“熱點(diǎn)”,其仍能通過光束照射引發(fā)的電阻變化特性實(shí)現(xiàn)精細(xì)檢測(cè)——這恰好彌補(bǔ)了EMMI在金屬遮擋區(qū)域光信號(hào)捕捉受限的不足。電激勵(lì)作為一種能量輸入方式,能激發(fā)物體內(nèi)部熱分布變化,為鎖相熱成像系統(tǒng)捕捉細(xì)微溫差提供熱源基礎(chǔ)。高分辨率鎖相紅外熱成像系統(tǒng)P20
鎖相熱成像系統(tǒng)提升電激勵(lì)檢測(cè)的抗干擾能力。缺陷定位鎖相紅外熱成像系統(tǒng)按需定制
鎖相熱成像系統(tǒng)的電激勵(lì)方式在電子產(chǎn)業(yè)的 LED 芯片檢測(cè)中扮演著不可或缺的角色,為 LED 產(chǎn)品的質(zhì)量提升提供了重要支持。LED 芯片是 pn 結(jié),pn 結(jié)的質(zhì)量直接決定了 LED 的發(fā)光效率、壽命和可靠性。如果 pn 結(jié)存在缺陷,如晶格失配、雜質(zhì)污染等,會(huì)導(dǎo)致芯片的電光轉(zhuǎn)換效率下降,發(fā)熱增加,嚴(yán)重影響 LED 的性能。通過對(duì) LED 芯片施加電激勵(lì),使芯片處于工作狀態(tài),缺陷處的電流分布和熱分布會(huì)出現(xiàn)異常,導(dǎo)致局部溫度升高。鎖相熱成像系統(tǒng)能夠精確檢測(cè)到這些溫度差異,并通過圖像處理技術(shù),清晰顯示出 pn 結(jié)缺陷的位置和形態(tài)。
制造商可以根據(jù)檢測(cè)結(jié)果,篩選出良好的 LED 芯片,剔除不合格產(chǎn)品,從而提升 LED 燈具、顯示屏等產(chǎn)品的質(zhì)量和使用壽命。例如,在 LED 顯示屏的生產(chǎn)過程中,利用該系統(tǒng)對(duì) LED 芯片進(jìn)行檢測(cè),可使產(chǎn)品的不良率降低 30% 以上,推動(dòng)了電子產(chǎn)業(yè)中 LED 領(lǐng)域的發(fā)展。 缺陷定位鎖相紅外熱成像系統(tǒng)按需定制