很多家長說,給孩子報了奧數(shù)班,但是成績卻并沒有提升,有的甚至還下降,孩子也討厭學奧數(shù),上課聽不懂,做題不會做,一提奧數(shù)就頭疼。首先,學奧數(shù)可不是買本奧數(shù)書,報個奧數(shù)班,悶頭苦學,死記硬背去硬磕書本。學習奧數(shù)有著獨特的學習方法和技巧,如果不能掌握正確學習方法和技巧,只會事倍功半,成績很難有大的提升,甚至導致文學生厭學。帶你了解奧數(shù)1.小學奧數(shù)的“三無”特點在學之前我們要先了解一下:小學奧數(shù)它有個特點就是“三無”無大綱、無教材、無標準。跟我們的課本是**的兩個體系,因此很多家長問,我們是人教版的或者北師大版的課本,能學奧數(shù)嗎?實際上,不管什么版本教材,都可以學奧數(shù)。(1)在學校無論學哪門課都有教學大綱,詳細羅列了你應該要掌握的知識點。但奧數(shù)屬于拔高和拓展,不是小學義務教育階段的內容,所以它無大綱。(2)市面上的奧數(shù)教材有上百種,哪種都能用,但要學**適用的??赡芤槐窘滩纳?0%的內容你的目標學校根本不會考,或者有的考試內容很多奧數(shù)書上都沒有,學到**后耗時耗力卻沒有達成好的結果。 奧數(shù)資源公平分配是教育均衡化的重要議題。開展數(shù)學思維性價比
學奧數(shù)的好方法在這里!
目前奧數(shù)的學習主要方式有:一是報班,二是家長自己輔導。**普遍的方式還是報班,通常是老師把一類題目解題知識點詳細講解,再總結一些“技巧”傳授給學生。聽懂了的孩子慢慢有了成就感,家長也滿意孩子有進步。沒有聽懂的孩子就歸結于孩子不適合學奧數(shù),或者難度不適合等。奧數(shù)很有趣,但困難就是應用場景變化多。當孩子在**解決新場景的時候,就會發(fā)現(xiàn)題目非常熟悉,題目要考查的知識點也非常清楚,但就是無法用所學的方法解決問題。這時家長就會覺得孩子天生不善于舉一反三,見的題型不夠多等原因,開始增加刷題量,讓孩子反復見題型以達到效果。但真是這樣的嗎?這樣真的好嗎? 永年區(qū)四年級上冊數(shù)學思維訓練題奧數(shù)題目常以趣味故事包裝,激發(fā)學生的探索欲望。
27. 函數(shù)思想解行程問題 甲乙兩人從A、B相向而行,甲速v,乙速1.5v,距離d。相遇時間t=d/(v+1.5v)=d/2.5v。此時甲行駛vt,乙1.5vt,且vt+1.5vt=d,驗證結果一致性。復雜情境:往返運動中第二次相遇總路程為3d,時間3d/(v+1.5v)=3d/2.5v。通過函數(shù)圖像分析距離隨時間變化趨勢,直觀揭示運動規(guī)律。28. 組合計數(shù)之隔板法應用 將10個相同蘋果分給3人,每人至少1個,解法為C(9,2)=36種(插2個板在9個空隙)。若允許有人得0個,則轉化為C(12,2)=66種。變式:分蘋果且甲至少2個,乙至多5個,需使用容斥原理:先給甲1個,剩余9個無限制分法C(11,2)=55,再減去乙超過5的情況。此類方法在資源分配與概率計算中廣泛應用。
19. 動態(tài)規(guī)劃解樓梯問題 爬10級樓梯,每次可跨1或2級,求不同走法總數(shù)。遞推公式:f(n)=f(n-1)+f(n-2),初始f(1)=1,f(2)=2,計算得f(10)=89種。類比斐波那契數(shù)列,解釋重疊子問題與記憶化優(yōu)化。變式:若允許跨3級,則f(n)=f(n-1)+f(n-2)+f(n-3)。此類訓練為算法設計與路徑規(guī)劃奠定基礎。20. 密碼學中的替換加密 凱撒密碼將字母按固定偏移量替換(如A→D,B→E)。破譯"KHOR"密文,統(tǒng)計字母頻率推測偏移量3,明文為"HELO"。進階維吉尼亞密碼使用密鑰循環(huán)移位,需通過重合指數(shù)法解開密鑰長度。例如密文"XMCKL"可能對應不同密鑰字母的位移,數(shù)學思維在頻率分析與模運算中起很大作用,此類內容激發(fā)學生對信息安全的興趣。奧數(shù)教材里的“一題多解”訓練發(fā)散性思維品質。
數(shù)論進階之費馬小定理應用: 證明13?? mod 17的值。根據(jù)費馬小定理,131? ≡1 mod 17,分解指數(shù)47=16×2+15,則13??≡(131?)2×131?≡12×131?。進一步計算132≡169≡16,13?≡162≡256≡1,故131?=13?×13?×13?×133≡1×1×1×(-4)3≡-64≡4 mod 17。此類訓練為RSA加密算法提供核心數(shù)學工具。 生物數(shù)學之種群動態(tài)模型: 用差分方程模擬狼-兔種群關系:兔數(shù)量R???=1.2R?-0.01R?W?,狼數(shù)量W???=0.8W?+0.005R?W?。當初始值R?=100,W?=20時,計算前面三代種群變化:R?=1.2×100-0.01×100×20=100,W?=0.8×20+0.005×100×20=26;R?=1.2×100-0.01×100×26=94,W?=0.8×26+0.005×94×26≈31。通過平衡點分析揭示生態(tài)穩(wěn)定性條件。1.奧數(shù)謎題“海盜分金幣”融合博弈論與逆向推理思維,激發(fā)策略分析能力。成安7年級下冊數(shù)學思維導圖
數(shù)陣謎題通過行、列、宮約束訓練專注力。開展數(shù)學思維性價比
41. 余數(shù)定理的同余應用 求滿足以下條件的很小正整數(shù):除以3余2,除以5余1,除以7余4。利用中國剩余定理,設數(shù)為x=3a+2,代入第二個條件得3a+2≡1 mod 5 → a≡3 mod 5,即a=5b+3,x=15b+11。再代入第三個條件:15b+11≡4 mod 7 → b≡3 mod 7,故b=7c+3,x=15×7c+56=105c+56,至小解為56。此方法在密碼學RSA算法中用于構造特定模數(shù)。42. 無窮遞降法證根號2無理性 假設√2=a/b(a,b互質),則2b2=a2,故a必為偶數(shù),設a=2k,代入得2b2=4k2→b2=2k2,b也為偶數(shù),與a,b互質矛盾。費馬發(fā)明的無窮遞降法通過構造更小整數(shù)解重置假設,此思想在證明不定方程無解時威力明顯,如x?+y?=z2無非平凡解。開展數(shù)學思維性價比