陶瓷金屬化在眾多領(lǐng)域有著廣泛應用。在電力電子領(lǐng)域,作為弱電控制與強電的橋梁,對支持高技術(shù)發(fā)展意義重大。在微波射頻與微波通訊領(lǐng)域,氮化鋁陶瓷基板憑借介電常數(shù)小、介電損耗低、絕緣耐腐蝕等優(yōu)勢,其覆銅基板可用于射頻衰減器、通信基站(5G)等眾多設(shè)備。新能源汽車領(lǐng)域,繼電器大量應用陶瓷金屬化技術(shù)。陶瓷殼體絕緣密封高壓高電流電路,防止斷閉產(chǎn)生的火花引發(fā)短路起火,保障整車安全性能與使用壽命。在IGBT領(lǐng)域,國內(nèi)高鐵IGBT模塊常用丸和提供的氮化鋁陶瓷基板,未來高導熱氮化硅陶瓷有望憑借可焊接更厚無氧銅、可靠性高等優(yōu)勢,在電動汽車功率模板中廣泛應用。LED封裝領(lǐng)域,氮化鋁陶瓷基板因高導熱、散熱快且成本合適,受到LED制造企業(yè)青睞,用于高亮度LED、紫外LED封裝,實現(xiàn)小尺寸大功率。陶瓷金屬化技術(shù)憑借獨特優(yōu)勢,在各領(lǐng)域持續(xù)拓展應用范圍。陶瓷金屬化,助力 LED 封裝實現(xiàn)小尺寸大功率的優(yōu)勢突破。東莞氧化鋁陶瓷金屬化種類
陶瓷金屬化,即在陶瓷表面牢固粘附一層金屬薄膜,實現(xiàn)陶瓷與金屬焊接的技術(shù)。在現(xiàn)代科技發(fā)展中,其重要性日益凸顯。隨著 5G 時代來臨,半導體芯片功率增加,對封裝散熱材料要求更嚴苛。陶瓷金屬化產(chǎn)品所用陶瓷材料多為 96 白色或 93 黑色氧化鋁陶瓷,通過流延成型。制備方法多樣,Mo - Mn 法以難熔金屬粉 Mo 為主,加少量低熔點 Mn,燒結(jié)形成金屬化層,但存在燒結(jié)溫度高、能源消耗大、封接強度低的問題?;罨?Mo - Mn 法是對其改進,添加活化劑或用鉬、錳的氧化物等代替金屬粉,降低金屬化溫度,雖工藝復雜、成本高,但結(jié)合牢固,應用較廣?;钚越饘兮F焊法工序少,一次升溫就能完成陶瓷 - 金屬封接,釬焊合金含活性元素,可與 Al2O3 反應形成金屬特性反應層,不過活性釬料單一,應用受限。珠海鍍鎳陶瓷金屬化廠家陶瓷金屬化,為電子電路基板賦能,提升電路運行可靠性。
《探秘陶瓷金屬化的魅力》:當陶瓷邂逅金屬,陶瓷金屬化技術(shù)誕生。這一技術(shù)對于功率型電子元器件封裝意義重大,封裝基板需集散熱、支撐、電連接等功能于一身,陶瓷金屬化恰好能滿足。例如,其高電絕緣性讓陶瓷在電路中安全隔離;高運行溫度特性,使產(chǎn)品能在高溫環(huán)境穩(wěn)定工作。直接敷銅法(DBC)作為金屬化方法之一,在陶瓷表面鍵合銅箔,通過特定溫度下的共晶反應實現(xiàn)連接,但也面臨制作成本高、抗熱沖擊性能受限等挑戰(zhàn) 。
《陶瓷金屬化的多面性》:陶瓷金屬化作為材料領(lǐng)域的重要技術(shù),應用前景廣闊。從步驟來看,煮洗、金屬化涂敷、燒結(jié)、鍍鎳等環(huán)節(jié)緊密相連,**終制成金屬化陶瓷基片等產(chǎn)品。在 LED 散熱基板應用中,陶瓷金屬化產(chǎn)品憑借尺寸精密、散熱好等特點,有效解決 LED 散熱難題?;钚越饘兮F焊法是常用制備手段,工序少,一次升溫就能完成陶瓷 - 金屬封接,不過活性釬料單一,限制了其大規(guī)模連續(xù)生產(chǎn)應用 。
陶瓷金屬化是指在陶瓷表面牢固地粘附一層金屬薄膜,從而實現(xiàn)陶瓷與金屬之間的焊接。其重心技術(shù)價值主要體現(xiàn)在以下幾個方面:解決連接難題2:陶瓷材料多由離子鍵和共價鍵組成,金屬主要由金屬鍵組成,二者物性差異大,連接難度高。陶瓷金屬化作為中間橋梁,能讓陶瓷與金屬實現(xiàn)可靠連接,形成復合部件,使它們的優(yōu)勢互補,廣泛應用于航空航天、能源化工、冶金機械、兵工等國芳或民用領(lǐng)域。提升材料性能3:陶瓷具備高導熱性、低介電損耗、絕緣性、耐熱性、強度以及與芯片匹配的熱膨脹系數(shù)等優(yōu)點,是功率型電子元器件理想的封裝散熱材料,但存在導電性差等不足。金屬化后可在保持陶瓷原有優(yōu)良性能的基礎(chǔ)上,賦予其導電等特性,擴展了陶瓷材料的使用范圍,使其能應用于電子器件中的導電電路、電極等部分,提高了器件的性能和可靠性。滿足特定應用需求:在5G通信等領(lǐng)域,隨著半導體芯片功率增加,輕型化和高集成度趨勢明顯,散熱問題至關(guān)重要3。陶瓷金屬化產(chǎn)品尺寸精密、翹曲小、金屬和陶瓷接合力強、接合處密實、散熱性更好,能滿足5G基站等對封裝散熱材料的嚴苛要求。此外,在陶瓷濾波器等器件中,金屬化技術(shù)還可替代銀漿工藝,降低成本并提高性能3。陶瓷金屬化,在陶瓷封裝領(lǐng)域,保障氣密性與穩(wěn)定性。
陶瓷金屬化在電子領(lǐng)域扮演著不可或缺的角色。陶瓷材料本身具備高絕緣性、高耐熱性和低熱膨脹系數(shù),經(jīng)金屬化處理后,融合了金屬的導電性,成為制造電子基板的理想材料。在集成電路中,陶瓷金屬化基板為芯片提供穩(wěn)定支撐,憑借良好的散熱性能,迅速導出芯片運行產(chǎn)生的熱量,防止芯片因過熱性能下降或損壞。像在高性能計算機里,陶瓷金屬化多層基板實現(xiàn)了芯片間的高密度互聯(lián),大幅提升數(shù)據(jù)傳輸速度,保障系統(tǒng)高效運行。在通信基站中,陶瓷金屬化器件能夠承受大功率射頻信號,降低信號傳輸損耗,***提升通信質(zhì)量。從日常使用的手機,到復雜的衛(wèi)星通信設(shè)備,陶瓷金屬化技術(shù)助力電子設(shè)備性能不斷突破,推動整個電子產(chǎn)業(yè)向更**邁進。陶瓷金屬化效果不理想?找同遠,重新定義專業(yè)標準。東莞氧化鋁陶瓷金屬化種類
追求高質(zhì)量陶瓷金屬化,就選同遠表面處理,好技術(shù)。東莞氧化鋁陶瓷金屬化種類
陶瓷金屬化是實現(xiàn)陶瓷與金屬良好連接的重要工藝,有著嚴格的流程規(guī)范。首先對陶瓷基體進行處理,使用金剛石砂輪等工具對陶瓷表面進行打磨,使其平整光滑,然后在超聲波作用下,用酒精、炳酮等有機溶劑清洗,去除表面雜質(zhì)與油污。接著是金屬化漿料的準備,以鉬錳法為例,將鉬粉、錳粉、玻璃料等按特定比例混合,加入有機載體,通過球磨機長時間研磨,制成均勻細膩、流動性良好的漿料。之后采用絲網(wǎng)印刷或流延法,將金屬化漿料精確轉(zhuǎn)移到陶瓷表面,確保涂層厚度一致且無氣泡、偵孔等缺陷,涂層厚度一般控制在 15 - 25μm 。涂覆后的陶瓷需進行烘干,在 80℃ - 150℃的烘箱中,去除漿料中的水分和有機溶劑,使?jié){料初步固化。烘干后進入高溫燒結(jié)階段,把陶瓷放入高溫氫氣爐內(nèi),升溫至 1400℃ - 1600℃ 。在此高溫下,漿料中的玻璃料軟化,促進金屬原子向陶瓷內(nèi)部擴散,形成牢固的金屬化層。為提高金屬化層的可焊性與耐腐蝕性,通常會進行鍍鎳處理,利用電鍍原理,在金屬化層表面均勻鍍上一層鎳。對金屬化后的陶瓷進行周到檢測,通過金相分析觀察金屬化層與陶瓷的結(jié)合情況,用拉力試驗機測試結(jié)合強度等,確保產(chǎn)品質(zhì)量達標 。東莞氧化鋁陶瓷金屬化種類