BMS電池系統(tǒng)俗稱之為電池保姆或電池管家,主要就是為了智能化管理及維護(hù)各個(gè)電池單元,防止電池出現(xiàn)過充電和過放電,延長(zhǎng)電池的使用壽命,監(jiān)控電池的狀態(tài)。BMS電池管理系統(tǒng)單元包括BMS電池管理系統(tǒng)、控制模組、顯示模組、無線通信模組、電氣設(shè)備、用于為電氣設(shè)備供電的電池組以及用于采集電池組的電池信息的采集模組,所述BMS電池管理系統(tǒng)通過通信接口分別與無線通信模組及顯示模組連接,所述采集模組的輸出端與BMS電池管理系統(tǒng)的輸入端連接,所述BMS電池管理系統(tǒng)的輸出端與控制模組的輸入端連接,所述控制模組分別與電池組及電氣設(shè)備連接,所述BMS電池管理系統(tǒng)通過無線通信模塊與Server服務(wù)器端連接。BMS通過必要措施緩解電池組的不一致性,為新能源車輛的使用安全提供保障。天津BMS電池管理測(cè)試系統(tǒng)案例
對(duì)于混合動(dòng)力車電池,由于工況復(fù)雜,運(yùn)行中為了維持電量不變,電流有充有放;停車時(shí)除了維護(hù)外,沒有站上充電的機(jī)會(huì);電池容量較小,安時(shí)積分的相對(duì)誤差大。因此,簡(jiǎn)單的開路電壓修正方法還不能滿足混合動(dòng)力車電池SOC 的估計(jì)精度要求,需要其他融合方法解決。加權(quán)融合算法是將不同方法得到的SOC 按一定權(quán)值進(jìn)行加權(quán)估計(jì)的方法。Mark Verbrugge等采用安時(shí)積分獲得SOCc與采用具有滯回的一階RC模型獲得SOCv的加權(quán)方法估計(jì)SOC,卡爾曼濾波是一種常用的融合算法。由于SOC不能直接測(cè)量,目前一般將兩種估計(jì)SOC 的方法融合起來估計(jì)。SOC被當(dāng)成電池系統(tǒng)的一個(gè)內(nèi)部狀態(tài)分析。溫州BMS電池管理測(cè)試系統(tǒng)出廠價(jià)BMS電池管理系統(tǒng)功能:實(shí)時(shí)數(shù)據(jù)顯示。
SOC(State of Charge),可用電量占據(jù)電池較大可用容量的比例,通常以百分比表示,100%表示完全充電,0%表示完全放電。這是針對(duì)單個(gè)電池的定義,對(duì)于電池模塊(或電池組,由于電池組由多個(gè)模塊組成,因此從模塊SOC計(jì)算電池組的SOC就像電池電池單體SOC估計(jì)模塊SOC一樣),情況有一點(diǎn)復(fù)雜。在SOC估計(jì)方法的之后一節(jié)討論。目前,對(duì)SOC 的研究已經(jīng)基本成熟,SOC 算法主要分為兩大類,一類為單一SOC 算法,另一類為多種單一SOC 算法的融合算法。單一SOC 算法包括安時(shí)積分法、開路電壓法、基于電池模型估計(jì)的開路電壓法、其他基于電池性能的SOC估計(jì)法等。融合算法包括簡(jiǎn)單的修正、加權(quán)、卡爾曼濾波(或擴(kuò)展卡爾曼濾波)以及滑模變結(jié)構(gòu)方法等。
在鋰電池工作溫度為90~120 ℃時(shí),SEI 膜將開始放熱分解,而一些電解質(zhì)體系會(huì)在較低溫度下分解約69℃。當(dāng)溫度超過120℃,SEI 膜分解后無法保護(hù)負(fù)碳電極,使得負(fù)極與有機(jī)電解質(zhì)直接反應(yīng),產(chǎn)生可燃?xì)怏w將。當(dāng)溫度為130 ℃,隔膜將開始熔化并關(guān)閉離子通道,使得電池的正負(fù)極暫時(shí)沒有電流流動(dòng)。當(dāng)溫度升高時(shí),正極材料開始分解(LiCoO 2 開始分解約在150 ℃,LiNi0.8Co0.15Al0.05O2在約160 ℃,LiNixCoyMnzO2 在約210℃,LiMn2O4 在約265 ℃,LiFePO4在約310℃)并產(chǎn)生氧氣。BMS電池管理系統(tǒng)單元包括控制模組、顯示模組、無線通信模組、電氣設(shè)備、電池組、采集模組。
關(guān)于系統(tǒng)對(duì)不同信號(hào)的數(shù)據(jù)采樣頻率和同步要求不同,對(duì)慣性大的參量要求較低,如純電動(dòng)車電池正常放電的溫升數(shù)量級(jí)為1℃/10 min,考慮到溫度的安全監(jiān)控,同時(shí)考慮BMS溫度的精度(約為1℃),溫度的采樣間隔可定為30 s(對(duì)混合動(dòng)力電池,溫度采樣率需要更高一些)。電壓與電流信號(hào)變化較快,采樣頻率和同步性要求很高。由交流阻抗分析可知,動(dòng)力電池的歐姆內(nèi)阻響應(yīng)在ms級(jí),SEI膜離子傳輸阻力電壓響應(yīng)為10 ms級(jí),電荷轉(zhuǎn)移(雙電容效應(yīng))響應(yīng)為1~10 s級(jí),擴(kuò)散過程響應(yīng)為min級(jí)。鋰離子電池細(xì)分市場(chǎng)在2019年貢獻(xiàn)了總市場(chǎng)份額的近五分之三份額。南通BMS電池管理測(cè)試系統(tǒng)答疑解惑
近年來,我國(guó)新能源汽車規(guī)模迅速擴(kuò)張。天津BMS電池管理測(cè)試系統(tǒng)案例
故障診斷是保證電池安全的必要技術(shù)之一。安全狀態(tài)估計(jì)屬于電池故障診斷的重要項(xiàng)目之一,BMS可以根據(jù)電池的安全狀態(tài)給出電池的故障等級(jí)。目前導(dǎo)致電池嚴(yán)重事故的是電池的熱失控,以熱失控為主要的安全狀態(tài)估計(jì)是較迫切的需求。導(dǎo)致熱失控的主要誘因有過熱、過充電、自引發(fā)內(nèi)短路等。研究過熱、內(nèi)短路的熱失控機(jī)理可以獲得電池的熱失控邊界。故障診斷技術(shù)目前已發(fā)展成為一門新型交叉學(xué)科。故障診斷技術(shù)基于對(duì)象工作原理,綜合計(jì)算機(jī)網(wǎng)絡(luò)、數(shù)據(jù)庫(kù)、控制理論、人工智能等技術(shù),在許多領(lǐng)域中的應(yīng)用已經(jīng)較為成熟。鋰離子電池的故障診斷技術(shù)尚屬于發(fā)展階段,研究主要依賴于參數(shù)估計(jì)、狀態(tài)估計(jì)及基于經(jīng)驗(yàn)等方法(與上述SOH研究類似)。天津BMS電池管理測(cè)試系統(tǒng)案例