河北BMS電池管理測(cè)試系統(tǒng)工作原理

來源: 發(fā)布時(shí)間:2021-12-13

2019年基于鋰離子電池的細(xì)分市場(chǎng)占據(jù)較大份額。根據(jù)電池類型,電池管理系統(tǒng)也可分為鋰離子電池、鉛酸電池、鎳電池、液流電池等不同種類,其中鋰離子電池細(xì)分市場(chǎng)在2019年貢獻(xiàn)了較大份額,占總市場(chǎng)份額的近五分之三,預(yù)計(jì)在預(yù)測(cè)期內(nèi)將保持其主導(dǎo)地位。大多數(shù)電動(dòng)汽車制造商都在安裝鋰離子電池,以獲得更好、更平穩(wěn)的性能,這進(jìn)一步推動(dòng)了電池管理系統(tǒng)在鋰離子電池領(lǐng)域的增長(zhǎng)。不過在預(yù)期內(nèi),基于鉛酸的電池管理系統(tǒng)細(xì)分市場(chǎng)預(yù)計(jì)將實(shí)現(xiàn)22.7%的較高復(fù)合年增長(zhǎng)率,因?yàn)樗禽^便宜的二次來源,幾乎可以完全回收,并且使用起來更安全。BMS電池管理系統(tǒng)功能:數(shù)據(jù)記錄及分析。河北BMS電池管理測(cè)試系統(tǒng)工作原理

對(duì)于混合動(dòng)力車電池,由于工況復(fù)雜,運(yùn)行中為了維持電量不變,電流有充有放;停車時(shí)除了維護(hù)外,沒有站上充電的機(jī)會(huì);電池容量較小,安時(shí)積分的相對(duì)誤差大。因此,簡(jiǎn)單的開路電壓修正方法還不能滿足混合動(dòng)力車電池SOC 的估計(jì)精度要求,需要其他融合方法解決。加權(quán)融合算法是將不同方法得到的SOC 按一定權(quán)值進(jìn)行加權(quán)估計(jì)的方法。Mark Verbrugge等采用安時(shí)積分獲得SOCc與采用具有滯回的一階RC模型獲得SOCv的加權(quán)方法估計(jì)SOC,卡爾曼濾波是一種常用的融合算法。由于SOC不能直接測(cè)量,目前一般將兩種估計(jì)SOC 的方法融合起來估計(jì)。SOC被當(dāng)成電池系統(tǒng)的一個(gè)內(nèi)部狀態(tài)分析。專業(yè)BMS電池管理監(jiān)控系統(tǒng)架構(gòu)BMS電池管理系統(tǒng)實(shí)現(xiàn)電池端電壓的測(cè)量、單體電池間的能量均衡、通訊組網(wǎng)等功能。

近幾年,國(guó)內(nèi)外研究者在不斷研究更科學(xué)、高效的檢測(cè)方法和手段,其中通過對(duì)于熱效應(yīng)及電池溫度方面的研究,取得不少進(jìn)展。通過檢測(cè)電池的表面溫度,結(jié)合電化學(xué)模型,利用量熱法計(jì)算得到電池充電過程中放出的熱量和熱傳導(dǎo)系數(shù),之后建立熱效應(yīng)理論模型,可模擬計(jì)算電池內(nèi)部的溫度,進(jìn)而來描述電池的熱行為。人們已經(jīng)建立了多種類型的熱效應(yīng)模型,但采取的測(cè)溫手段主要是傳統(tǒng)的熱電偶測(cè)溫法。熱電偶操作比較復(fù)雜,且只能有限布點(diǎn),不能整體地掌握樣品溫度分布;同時(shí),熱電偶還帶有延時(shí)性,不能及時(shí)反映鋰離子電池的溫度變化情況,不利于建立實(shí)時(shí)溫度變化曲線。

分布式BMS硬件的拓?fù)浣Y(jié)構(gòu)是將BMS 的主控板和從控板分開,甚至把低壓和高壓的部分分開,以增加系統(tǒng)配置的靈活性,適應(yīng)不同容量、不同規(guī)格型式的模組和電池包??梢蕴峁┥鲜黾惺交蚍植际降母鞣NBMS 硬件方案。BMS 的狀態(tài)估算及均衡控制.針對(duì)電池在制造、使用過程中的不一致性,以及電池容量、內(nèi)阻隨電池生命周期的變化,團(tuán)隊(duì)創(chuàng)造性的應(yīng)用多狀態(tài)聯(lián)合估計(jì)、擴(kuò)展卡爾曼濾波算法、內(nèi)阻/ 容量在線識(shí)別等方法,實(shí)現(xiàn)對(duì)電池全生命周期的高精度狀態(tài)估算。BMS電池管理控制系統(tǒng)時(shí)刻監(jiān)控電池的使用狀態(tài)。

經(jīng)測(cè)算,針對(duì)三元鋰電池,常溫狀態(tài)下單體電池SOC 估算偏差可達(dá)較大2%,平均估算偏差1%。同時(shí)針對(duì)電池單體間的不一致性,使用基于剩余充電電量一致等均衡策略,較大程度的揮電池的較大能效。電池內(nèi)短路的快速識(shí)別:電池內(nèi)短路是較復(fù)雜、較難確定的熱失控誘因,是目前電池安全領(lǐng)域的國(guó)際難題,可導(dǎo)致災(zāi)難性后果。電池內(nèi)短路無法從根本上杜絕,目前一般是通過長(zhǎng)時(shí)間(2 周以上)的擱置觀察以期早期發(fā)現(xiàn)問題。在電池的內(nèi)短路識(shí)別方面,擁有10 余項(xiàng)世界范圍內(nèi)率先的**及專利許可。利用對(duì)稱環(huán)形電路拓?fù)浣Y(jié)構(gòu)(SLCT)及相關(guān)算法,可以在極短時(shí)間內(nèi)(5 分鐘內(nèi))對(duì)多節(jié)電池單體進(jìn)行批量?jī)?nèi)短路檢測(cè),能夠識(shí)別出0~100kΩ量級(jí)的內(nèi)短路并準(zhǔn)確估算內(nèi)短阻值。這種方法可明顯降低電芯生產(chǎn)企業(yè)或模組組裝廠家的運(yùn)營(yíng)成本,提高電池生產(chǎn)及使用過程的安全性。預(yù)計(jì)在不久的將來,越來越多地采用云連接的電池管理系統(tǒng)將帶來許多機(jī)會(huì)。低壓BMS電池管理監(jiān)控系統(tǒng)功能介紹

動(dòng)力鋰離子電池的高能量密度特性使其成為新能源車輛的主要?jiǎng)恿υ?。河北BMS電池管理測(cè)試系統(tǒng)工作原理

鋰電池衰減機(jī)理。鋰離子電池為“搖椅式”電池,正負(fù)極的活性材料可以看作容納鋰離子的兩個(gè)水桶,鋰離子相當(dāng)于桶里的水。電池的性能衰減可以理解為“水”變少(即活性鋰離子損失),或“桶”變?。ㄕ龢O或負(fù)極活性物質(zhì)變少)。導(dǎo)致活性鋰離子損失的主要原因是:電極與電解液副反應(yīng)形成鈍化膜(如SEI膜);由于充放電電池膨脹收縮疲勞導(dǎo)致電極龜裂,導(dǎo)致電極與電解液副反應(yīng)形成新的SEI膜,消耗鋰離子;不當(dāng)充電導(dǎo)致的析鋰與電解液反應(yīng)消耗鋰離子。導(dǎo)致活性材料損失的主要原因包括:材料中的錳、鐵或鎳等離子溶解;活性材料顆粒脫落;活性材料晶格塌陷。目前SOH 估計(jì)方法主要分為耐久性經(jīng)驗(yàn)?zāi)P凸烙?jì)法和基于電池模型的參數(shù)辨識(shí)方法。河北BMS電池管理測(cè)試系統(tǒng)工作原理