實用新型的有益效果是:本實用新型的一種BMS電池管理系統(tǒng)的遠程監(jiān)控系統(tǒng),包括主控制終端、Server服務器端、移動客戶終端以及多個BMS電池管理系統(tǒng)單元,主控制終端和移動客戶終端均通過通信網(wǎng)絡與Server服務器端連接;BMS電池管理系統(tǒng)單元包括BMS電池管理系統(tǒng)、控制模組、顯示模組、無線通信模組、電氣設備、用于為電氣設備供電的電池組以及用于采集電池組的電池信息的采集模組,BMS電池管理系統(tǒng)通過通信接口分別與無線通信模組及顯示模組連接,采集模組的輸出端與BMS電池管理系統(tǒng)的輸入端連接,BMS電池管理系統(tǒng)的輸出端與控制模組的輸入端連接,控制模組分別與電池組及電氣設備連接,BMS電池管理系統(tǒng)通過無線通信模塊與Server服務器端連接。BMS主要作用是監(jiān)控電池的狀態(tài)。高科技BMS電池管理測試系統(tǒng)降價
目前,大部分車用鋰離子電池,要求的可靠工作溫度為,放電時-20~55°C,充電時0~45°C(對石墨負極),而對于負極LTO充電時至低溫度為-30°C;工作電壓一般為1.5~4.2 V左右(對于LiCoO2/C、LiNi0.8Co0.15Al0.05O2/C、LiCoxNiyMnzO2/C以及LiMn2O4/C等材料體系約2.5~4.2 V,對于LiMn2O4/Li4Ti5O12 材料體系約1.5~2.7 V,對于LiFePO4/C 材料體系約2.0~3.7 V)。溫度對鋰電池性能尤其安全性具有決定性的影響,根據(jù)電極材料類型的不同,鋰電池(C/LiMn2O4,C/LMO,C/LiCoxNiyMnzO2,C/NCM,C/LiFePO4,C/LiNi0.8Co0.15Al0.05O2,C/NCA)典型的工作溫度如下:放電在-20-55℃,充電在0-45℃;負極材料為Li4Ti5O12 或者 LTO時,至低充電溫度往往可以達到-30℃。溫州BMS電池管理測試系統(tǒng)供應商BMS電池管理系統(tǒng)功能:電池組總電流測量。
由于不同的充放電情況對應的端電壓響應不同,使得電池在同一時刻t 提供的剩余能量RE(t)也不相同。此處用一組標準電流倍率下的放電情況作對照,標準情況的端電壓Ut,st如圖中藍色曲線(Qcum-Ut,st)所示。由電池SOC 和標準放電容量的定義,此時放電截止位置的SOC 值SOClim,st為0,累積放電容量Qcum,st等于電池標準容量Qst。標準放電工況下對應的剩余能量REst(t)與之前的RE(t)有明顯的差距。電池剩余放電能量的差異同樣可以由當前的RE(t)與理論上較大的剩余放電能量進行比較。
有實用新型通過BMS電池管理系統(tǒng)實時采集電池組的電池信息并實時地將采集的電池信息發(fā)送到Server服務器端,用戶可以通過主控制終端和移動客戶端實時地獲知電池組的電池信息,實現(xiàn)對BMS電池管理系統(tǒng)的實時的遠程監(jiān)控,無需現(xiàn)場進行檢測操作,減少了大量人員監(jiān)管的投入,減輕了電池組的維護難度,充分節(jié)省了人力資源、時間與生產(chǎn)成本。而且,控制模組采用分離元件搭建,可以有效地控制電池組與電氣設備回路的通斷狀態(tài),能夠充分提高產(chǎn)品性能與效率,并減少產(chǎn)品的體積與生產(chǎn)成本。如果把電芯比作人體的心臟,模組和電池包比作強健的體魄,那么BMS電池管理系統(tǒng)就是大腦。
電池過充過程成為了導致鋰離子電池發(fā)生不安全行為的危險因素:當發(fā)生過充時,由于發(fā)生了不可逆的化學反應,電能轉(zhuǎn)變成熱能,導致電池溫度迅速升高,從而引發(fā)一系列的化學反應。尤其是當散熱性較差時,往往導致比單純的熱沖擊更嚴重的問題,可能發(fā)生電池起火,甚至炸裂。根據(jù)對現(xiàn)有主要標準的分析不難發(fā)現(xiàn),現(xiàn)有的標準對鋰離子電池安全性能的檢測方法和評判依據(jù)還顯得不足。這些標準中,有部分是針對鋰離子電池的外部環(huán)境和設計制造過程的標準;即便是針對安全性能的標準,也缺少明確的可量化衡量的檢測方法和評判體系,尤其是炸裂、起火、冒煙、泄漏、破裂和變形等判斷依據(jù),過于寬泛。電池管理系統(tǒng)(BMS)為一套保護動力電池使用安全的控制系統(tǒng)。新能源BMS電池管理測試系統(tǒng)出廠價
BMS電池管理系統(tǒng)功能:數(shù)據(jù)記錄及分析。高科技BMS電池管理測試系統(tǒng)降價
電化學模型是建立在傳質(zhì)、化學熱力學、動力學基礎(chǔ)上,涉及電池內(nèi)部材料的參數(shù)較多,而且很難準確獲得,模型運算量大,一般用于電池的性能分析與設計。如果電池模型參數(shù)已知,則很容易找到電池OCV。然后使用通過實驗得出的OCV-SOC查找表,可以容易地找到電池SOC。研究人員使用這種方法,并分別采取RINT模型,一階RC,二階RC模型,發(fā)現(xiàn)使用二階RC模型的較大估計誤差是4.3%,而平均誤差是1.4%。綜合比較上述常用的SOC 估計方法,卡爾曼濾波等基于電池模型的SOC 估計方法精確可靠,配合開路電壓駐車修正是目前的主流方法。高科技BMS電池管理測試系統(tǒng)降價