數(shù)控機(jī)床主要由數(shù)控裝置、伺服系統(tǒng)、測量反饋裝置、驅(qū)動裝置和機(jī)床本體等部分構(gòu)成。數(shù)控裝置是數(shù)控機(jī)床的,它如同機(jī)床的 “大腦”,負(fù)責(zé)接收并處理加工程序中的信息,將其轉(zhuǎn)化為控制指令。伺服系統(tǒng)則相當(dāng)于機(jī)床的 “肌肉”,根據(jù)數(shù)控裝置發(fā)出的指令,精確控制機(jī)床各坐標(biāo)軸的運(yùn)動,包括運(yùn)動的速度、方向和位移量等。測量反饋裝置用于實(shí)時檢測機(jī)床坐標(biāo)軸的實(shí)際位置和運(yùn)動狀態(tài),并將這些信息反饋給數(shù)控裝置,以便數(shù)控裝置對機(jī)床的運(yùn)動進(jìn)行精確調(diào)整,保證加工精度。驅(qū)動裝置在數(shù)控裝置的控制下,通過電氣或電液伺服系統(tǒng)實(shí)現(xiàn)主軸和進(jìn)給的驅(qū)動。機(jī)床本體是機(jī)床的機(jī)械結(jié)構(gòu)部分,包括床身、立柱、工作臺、主軸部件等,為加工過程提供機(jī)械支撐和運(yùn)動基礎(chǔ)。例如,在一臺數(shù)控車床上,數(shù)控裝置接收編程人員編寫的加工程序,經(jīng)過處理后向伺服系統(tǒng)發(fā)出指令,伺服系統(tǒng)驅(qū)動電機(jī)帶動絲杠旋轉(zhuǎn),使安裝在刀架上的刀具按照預(yù)定軌跡對工件進(jìn)行切削加工,測量反饋裝置實(shí)時監(jiān)測刀架的位置并反饋給數(shù)控裝置,確保加工精度,而機(jī)床本體則為整個加工過程提供穩(wěn)定的支撐 。數(shù)控電火花機(jī)床的伺服進(jìn)給系統(tǒng),精確控制電極進(jìn)給量?;葜葜悄軘?shù)控機(jī)床貨源
數(shù)控機(jī)床故障診斷的常用方法:數(shù)控機(jī)床故障診斷需綜合運(yùn)用多種方法快速定位問題。直觀檢查法通過觀察機(jī)床運(yùn)行狀態(tài)、聽異常聲音、聞異味等方式初步判斷故障點(diǎn),如發(fā)現(xiàn)主軸異響,可初步判斷軸承可能存在問題。儀器檢測法利用萬用表、示波器等工具檢測電氣元件和電路參數(shù),判斷是否存在短路、斷路、電壓異常等問題。自診斷功能法借助數(shù)控系統(tǒng)內(nèi)置診斷程序,實(shí)時監(jiān)測機(jī)床運(yùn)行數(shù)據(jù),當(dāng)出現(xiàn)故障時系統(tǒng)自動報警并顯示故障代碼,通過查閱故障代碼手冊可快速確定故障原因。備件替換法在懷疑某一零部件故障時,用同型號備件進(jìn)行替換,若故障消失則可確定故障部件。邏輯分析法根據(jù)機(jī)床工作原理和控制邏輯,分析故障現(xiàn)象與各部件之間的關(guān)系,逐步縮小故障范圍,精細(xì)定位故障點(diǎn)。佛山數(shù)控機(jī)床解決方案五軸加工中心的擺頭結(jié)構(gòu),擴(kuò)大刀具運(yùn)動范圍和加工角度。
在航空航天領(lǐng)域,數(shù)控機(jī)床發(fā)揮著舉足輕重的作用。航空航天產(chǎn)品對零件的精度、質(zhì)量和可靠性要求極高,而數(shù)控機(jī)床的高精度和高穩(wěn)定性恰好滿足了這些需求。例如,航空發(fā)動機(jī)作為飛機(jī)的部件,其內(nèi)部的葉片形狀復(fù)雜,精度要求極高。使用數(shù)控機(jī)床進(jìn)行加工,能夠精確控制葉片的曲面輪廓,保證葉片的氣動性能,提高發(fā)動機(jī)的效率和可靠性。在飛機(jī)機(jī)身結(jié)構(gòu)件的加工方面,數(shù)控機(jī)床可加工出大型、復(fù)雜的鋁合金框架和蒙皮零件,通過精確的定位和加工,確保機(jī)身結(jié)構(gòu)的強(qiáng)度和輕量化要求。此外,航空航天領(lǐng)域的零件多為小批量、多品種生產(chǎn),數(shù)控機(jī)床的柔性加工特點(diǎn)使其能夠快速適應(yīng)不同零件的加工需求,縮短產(chǎn)品的研制周期。像一些新型飛機(jī)的研發(fā)過程中,數(shù)控機(jī)床可根據(jù)設(shè)計的不斷改進(jìn),迅速調(diào)整加工工藝和程序,高效地生產(chǎn)出各種試驗(yàn)用零件,為飛機(jī)的順利研制提供有力支持 。
1948 年,美國帕森斯公司受美國空托,開展飛機(jī)螺旋槳葉片輪廓樣板加工設(shè)備的研制工作。鑒于樣板形狀復(fù)雜多樣且精度要求極高,常規(guī)加工設(shè)備難以滿足需求,遂提出計算機(jī)控制機(jī)床的構(gòu)想。1949 年,該公司在麻省理工學(xué)院伺服機(jī)構(gòu)研究室的協(xié)助下,正式開啟數(shù)控機(jī)床的研究征程,并于 1952 年成功試制出世界上臺由大型立式仿形銑床改裝而成的三坐標(biāo)數(shù)控銑床,這一成果標(biāo)志著機(jī)床數(shù)控時代的正式來臨。早期的數(shù)控裝置采用電子管元件,不僅體積龐大,而且價格高昂,在航空工業(yè)等少數(shù)對加工精度有特殊需求的領(lǐng)域用于加工復(fù)雜型面零件。1959 年,晶體管元件和印刷電路板的出現(xiàn),推動數(shù)控裝置進(jìn)入第二代,體積得以縮小,成本有所降低。1960 年后,較為簡易且經(jīng)濟(jì)的點(diǎn)位控制數(shù)控鉆床以及直線控制數(shù)控銑床發(fā)展迅速,促使數(shù)控機(jī)床在機(jī)械制造業(yè)各部門逐步得到推廣。激光切割機(jī)的吹氣系統(tǒng),吹除熔渣保證切割面光滑。
數(shù)控機(jī)床在電子制造領(lǐng)域的應(yīng)用:電子制造行業(yè)產(chǎn)品精密化、微型化趨勢,數(shù)控機(jī)床發(fā)揮重要作用。在 PCB(印刷電路板)加工中,數(shù)控鉆床憑借高精度定位和高速鉆孔能力,可加工直徑 0.1mm 的微孔,滿足電路板高密度布線需求。數(shù)控銑床用于電路板外形加工,能精確切割復(fù)雜形狀,尺寸精度達(dá) ±0.02mm。在半導(dǎo)體制造中,超精密數(shù)控機(jī)床用于芯片封裝模具加工,其納米級定位精度確保模具型腔尺寸精細(xì),保障芯片封裝質(zhì)量。此外,數(shù)控機(jī)床還應(yīng)用于電子元器件外殼、連接器等精密零件加工,通過高速銑削、電火花加工等工藝,實(shí)現(xiàn)零件高精度、高質(zhì)量生產(chǎn),推動電子制造行業(yè)向化邁進(jìn)。激光切割機(jī)的自動排版軟件,提高板材利用率降低成本。惠州雙主軸數(shù)控機(jī)床哪家好
臥式加工中心的托盤交換系統(tǒng),實(shí)現(xiàn)工件的連續(xù)加工?;葜葜悄軘?shù)控機(jī)床貨源
按照伺服系統(tǒng)控制方式,數(shù)控機(jī)床可分為開環(huán)控制數(shù)控機(jī)床、半閉環(huán)控制數(shù)控機(jī)床和閉環(huán)控制數(shù)控機(jī)床。開環(huán)控制數(shù)控機(jī)床的控制系統(tǒng)中不配備位置檢測裝置,無位移實(shí)際值反饋與指令值進(jìn)行比較修正,控制信號單向流動。其結(jié)構(gòu)簡單、成本較低,但由于無法實(shí)時監(jiān)測和調(diào)整機(jī)床的運(yùn)動誤差,加工精度相對較低,適用于對加工精度要求不高、負(fù)載較小的場合,如一些簡易的數(shù)控雕刻機(jī)。半閉環(huán)控制數(shù)控機(jī)床是在開環(huán)控制系統(tǒng)的基礎(chǔ)上,在伺服機(jī)構(gòu)中安裝角位移檢測裝置,可間接檢測移動部件的位移,然后將檢測信息反饋到數(shù)控裝置中。該方式能補(bǔ)償部分傳動環(huán)節(jié)的誤差,加工精度較開環(huán)控制有所提高,應(yīng)用較為,許多常見的數(shù)控車床、銑床多采用半閉環(huán)控制。閉環(huán)控制數(shù)控機(jī)床在機(jī)床移動部件位置上直接安裝直線位置檢測裝置,能夠?qū)C(jī)床工作臺位移進(jìn)行直接測量并通過反饋控制,將數(shù)控機(jī)床本身包含在位置控制環(huán)之內(nèi),機(jī)械系統(tǒng)引起的誤差可由反饋控制得以消除,加工精度高,但系統(tǒng)復(fù)雜、成本高,調(diào)試和維護(hù)難度大,常用于對加工精度要求極高的精密加工領(lǐng)域,如航空航天零件的加工 ?;葜葜悄軘?shù)控機(jī)床貨源