斯圖加特大學(xué)和阿德萊德大學(xué)的研究人員聯(lián)手澳大利亞醫(yī)學(xué)研究中心,共同合作研發(fā)了世界上特別小的3D打印微型內(nèi)窺鏡。該內(nèi)窺鏡所用到的微光學(xué)器件寬度只有125微米,可以用于直徑小于半毫米的血管內(nèi)進行內(nèi)窺鏡檢查。而這個精密的微光學(xué)器件是通過使用德國Nanoscribe公司的雙光子微納3D打印設(shè)備制作的。微型內(nèi)窺鏡可以幫助檢測人體動脈內(nèi)的斑塊、血栓和膽固醇晶體,因此對于醫(yī)學(xué)檢測極其重要,可以有助于減少中風(fēng)和心臟病發(fā)作的風(fēng)險。來自不來梅大學(xué)微型傳感器、致動器和系統(tǒng)(IMSAS)研究所的科學(xué)家們發(fā)明了一種全新的微流道混合方式,使用Nanoscribe公司的3D打印系統(tǒng),利用雙光子聚合原理(2PP)結(jié)合光刻技術(shù),將自由形式3D微流控混合元件集成到預(yù)制的晶圓級二維微流道中。無掩膜光刻認準納糯三維科技(上海)有限公司。廣東雙光子無掩膜光刻PPGT
Nanoscribe雙光子灰度光刻系統(tǒng)QuantumX,Nanoscribe的全球頭一次創(chuàng)建的工業(yè)級雙光子灰度光刻無掩模光刻系統(tǒng)QuantumX,適用于制造微光學(xué)衍射以及折射元件。Nanoscribe的全球頭一次創(chuàng)建工業(yè)級雙光子灰度光刻無掩模光刻系統(tǒng)QuantumX,適用于制造微光學(xué)衍射以及折射元件。利用Nanoscribe的雙光子聚合微納3D打印技術(shù),斯圖加特大學(xué)和阿德萊德大學(xué)的研究人員聯(lián)手澳大利亞醫(yī)學(xué)研究中心的科學(xué)家們新研發(fā)的微型內(nèi)窺鏡。將12050微米直徑的微光學(xué)器件直接打印在光纖上,構(gòu)建了一款功能齊全的超薄像差校正光學(xué)相干斷層掃描探頭。這是迄今有報道的尺寸低值排名優(yōu)先的自由曲面3D成像探頭,包括導(dǎo)管鞘在內(nèi)的直徑只為0.457mm。歡迎咨詢廣東雙光子無掩膜光刻PPGT無掩膜光刻系統(tǒng)可以實現(xiàn)非常高的加工精度和分辨率,適用于微米和納米級別的加工要求。
光子集成電路(PhotonicIntegratedCircuit,PIC)與電子集成電路類似,但不同的是電子集成電路集成的是晶體管、電容器、電阻器等電子器件,而光子集成電路集成的是各種不同的光學(xué)器件或光電器件,比如激光器、電光調(diào)制器、光電探測器、光衰減器、光復(fù)用/解復(fù)用器以及光放大器等。集成光子學(xué)可較廣地應(yīng)用于各種領(lǐng)域,例如數(shù)據(jù)通訊,激光雷達系統(tǒng)的自動駕駛技術(shù)和YL領(lǐng)域中的移動感應(yīng)設(shè)備等。而光子集成電路這項關(guān)鍵技術(shù),尤其是微型光子組件應(yīng)用,可以很大程度縮小復(fù)雜光學(xué)系統(tǒng)的尺寸并降低成本。光子集成電路的關(guān)鍵技術(shù)還在于連接接口,例如光纖到芯片的連接,可以有效提高集成度和功能性。類似于這種接口的制造非常具有挑戰(zhàn)性,需要權(quán)衡對準、效率和寬帶方面的種種要求。針對這些困難,科學(xué)家們提出了寬帶光纖耦合概念,并通過Nanoscribe的雙光子微納3D打印設(shè)備而制造的3D耦合器得以實現(xiàn)。
Nanoscribe首屆線上用戶大會于九月順利召開,在微流控研究中,通常在針對微流控器件和芯片的快速成型制作中會結(jié)合不同制造方法。亞琛工業(yè)大學(xué)(RWTHUniversityofAachen)和不來梅大學(xué)(UniversityofBremen)的研究小組提出將三維結(jié)構(gòu)的芯片結(jié)構(gòu)打印到預(yù)制微納通道中。生命科學(xué)研究的驅(qū)動力是三維打印模擬人類細胞形狀和大小的支架,以推動細胞培養(yǎng)和組織工程學(xué)。丹麥技術(shù)大學(xué)(DTU)和德國于利希研究中心的研究團隊展示了他們的成就,并強調(diào)了光刻膠如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微納光學(xué)和光子學(xué)研究中,布魯塞爾自由大學(xué)的研究人員提出了用于光纖到光纖和光纖到芯片連接的錐形光纖和低損耗波導(dǎo)等解決方案。阿卜杜拉國王科技大學(xué)的研究團隊3D打印了一個超小型單纖光鑷,以實現(xiàn)集成微納光學(xué)系統(tǒng)。連接處理是光子集成研究的挑戰(zhàn)。正如明斯特大學(xué)(WWU)研究人員所示,Nanoscribe微納加工技術(shù)正在驅(qū)動研究用于集成納米多孔電路的混合接口方法。麻省理工學(xué)院(MIT)的科學(xué)家們正在使用Nanoscribe的2PP技術(shù)制造用于高密度集成光子學(xué)的光學(xué)自由形式耦合器。我們的無掩膜光刻寫服務(wù)能夠滿足您對圖案精度的嚴格要求。
Nanoscribe的2PP技術(shù)將可調(diào)整模場的錐形體作為階躍折射率光波導(dǎo)光束。來自德國亞琛工業(yè)大學(xué)以及萊布尼茲材料研究所科學(xué)家們使用Nanoscribe的3D雙光子無掩模光刻系統(tǒng)以一種全新的方式制作帶有嵌入式3D微流控器件的2D微型通道,該器件的非常重要部件是模擬蜘蛛噴絲頭的復(fù)雜噴嘴設(shè)計。科學(xué)家們運用Nanoscribe的雙光子聚合技術(shù)(2PP)打印微型通道的聚合物母版,并結(jié)合軟光刻技術(shù)做后續(xù)復(fù)制工作。隨后,在密閉的微流道中通過芯片內(nèi)3D微納加工技術(shù)直接制作復(fù)雜結(jié)構(gòu)噴絲頭。這種集成復(fù)雜3D結(jié)構(gòu)于傳統(tǒng)平面微流控芯片的全新方式為微納加工制造打開了新的大門。布魯塞爾自由大學(xué)的光子學(xué)研究小組(B-PHOT)的科學(xué)家們正在通過使用Nanoscribe雙光子聚合技術(shù)(2PP)將光波導(dǎo)漏斗3D打印到光纖末端上來攻克將具有不同模場幾何形狀的兩個元件之間的光束進行高效和穩(wěn)健耦合這個難題。這些錐形光束漏斗可調(diào)整SMF的模式場,以匹配光子芯片上光波導(dǎo)模式場。更多有關(guān)3D雙光子無掩模光刻技術(shù)和產(chǎn)品,請咨詢Nanoscribe中國分公司-納糯三維科技(上海)有限公司。北京進口無掩膜光刻3D微納加工
Photonic Professional GT2雙光子無掩模光刻系統(tǒng)可適用于科研和工業(yè)領(lǐng)域應(yīng)用。廣東雙光子無掩膜光刻PPGT
Nanoscribe的PhotonicProfessionalGT2雙光子無掩模光刻系統(tǒng)的設(shè)計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復(fù)合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。雙光子灰度光刻技術(shù)可以一步實現(xiàn)真正具有出色形狀精度的多級衍射光學(xué)元件(DOE),并且滿足DOE納米結(jié)構(gòu)表面的橫向和縱向分辨率達到亞微米量級。由于需要多次光刻,刻蝕和對準工藝,衍射光學(xué)元件(DOE)的傳統(tǒng)制造耗時長且成本高。而利用增材制造即可簡單一步實現(xiàn)多級衍射光學(xué)元件,可以直接作為原型使用,也可以作為批量生產(chǎn)母版工具。廣東雙光子無掩膜光刻PPGT