德國科研NanoscribeQuantum X

來源: 發(fā)布時間:2024-01-19

Quantum X shape是Nanoscribe推出的全新高精度3D打印系統(tǒng),用于快速原型制作和晶圓級批量生產(chǎn),以充分挖掘3D微納加工在科研和工業(yè)生產(chǎn)領域的潛力。該系統(tǒng)是基于雙光子聚合技術(2PP)的專業(yè)激光直寫系統(tǒng),可為亞微米精度的2.5D和3D物體的微納加工提供極高的設計自由度。Quantum X shape可實現(xiàn)在6英寸的晶圓片上進行高精度3D微納加工。這種效率的提升對于晶圓級批量生產(chǎn)尤其重要,這對于科研和工業(yè)生產(chǎn)領域應用有著重大意義。總而言之,該系統(tǒng)拓寬了3D微納加工在多個科研領域和工業(yè)行業(yè)應用的更多可能性(如生命科學、材料工程、微流體、微納光學、微機械和微電子機械系統(tǒng)(MEMS)等)。全新Quantum X shape作為Nanoscribe工業(yè)級無掩膜光刻系統(tǒng)Quantum X產(chǎn)品系列的第二臺設備,可實現(xiàn)在25 cm2面積內打印任何結構,很大程度推動了生命科學,微流體,材料工程學中復雜應用的快速原型制作。專注于微納米3D打印設備的額研發(fā)和應用。德國科研NanoscribeQuantum X

德國科研NanoscribeQuantum X,Nanoscribe

Nanoscribe公司的PhotonicProfessionalGT2系統(tǒng)把雙光子聚合技術融入強大了3D打印工作流程,實現(xiàn)了各種不同的打印方案。雙光子聚合技術用于3D微納結構的增材制造,可以通過激光直寫而避免使用昂貴的掩模版和復雜的光刻步驟來創(chuàng)建3D和2.5D微結構制作。PhotonicProfessionalGT2系統(tǒng)可以實現(xiàn)精度上限的3D打印,突破了微納米制造的限制。該打印系統(tǒng)的易用性和靈活性的特點配以比較廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。我們的3D微納加工技術可以滿足您對于制作亞微米分辨率和毫米級尺寸的復雜微機械元件的要求。3D設計的多功能性對于制作復雜且響應迅速的高精度微型機械,傳感器和執(zhí)行器是至關重要的。四川雙光子聚合Nanoscribe微機械歡迎致電Nanoscribe中國分公司-納糯三維。

德國科研NanoscribeQuantum X,Nanoscribe

Nanoscribe作為一家納米,微米和中尺度高精度結構增材制造專家,一直致力于開發(fā)和生產(chǎn)3D 微納加工系統(tǒng)和無掩模光刻系統(tǒng),以及自研發(fā)的打印材料和特定應用不同解決方案。Nanoscribe成立于 2007 年,是卡爾斯魯厄理工學院 (KIT) 的衍生公司。在全球前列大學和創(chuàng)新科技企業(yè)的中,有超過2,500 多名用戶在使用我們突破性的 3D 微納加工技術和定制應用解決方案。 Nanoscribe 憑借其過硬的技術背景和市場敏銳度奠定了其市場優(yōu)于主導地位,并以高標準來要求自己以滿足客戶的需求。

Nanoscribe在微觀和納米領域一直非常出色,并且參與了很多3D打印的項目,包括等離子體技術、微光學等工業(yè)微加工相關項目。如今,Nanoscribe正在與美因茲大學和帕德博恩大學在內的其他行業(yè)帶領機構一起開發(fā)頻率和功率穩(wěn)定的小型二極管激光器。該團隊的項目為期三年,名為Miliquant,由德國聯(lián)邦教育和研究部(簡稱BMBF)提供資助。他們的研發(fā)成果——3D打印光源組件,將用于量子技術創(chuàng)新,并可以應用在醫(yī)療診斷、自動駕駛和細胞紅外顯微鏡成像之中。研發(fā)團隊將開展多項實驗,開發(fā)工業(yè)傳感器和成像系統(tǒng),這就需要復雜的研發(fā)工作,還需要開發(fā)可靠的組件,以及組裝和制造的新方法。更多有關微納3D打印產(chǎn)品和技術咨詢,歡迎聯(lián)系Nanoscribe中國分公司 - 納糯三維科技.

德國科研NanoscribeQuantum X,Nanoscribe

Nanoscribe的Photonic Professional GT2雙光子無掩模光刻系統(tǒng)的設計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。雙光子灰度光刻技術可以一步實現(xiàn)真正具有出色形狀精度的多級衍射光學元件(DOE),并且滿足DOE納米結構表面的橫向和縱向分辨率達到亞微米量級。由于需要多次光刻,刻蝕和對準工藝,衍射光學元件(DOE)的傳統(tǒng)制造耗時長且成本高。Nanoscribe雙光子灰度光刻微納打印系統(tǒng)技術具備高速打印,完全設計自由度和超高精度的特點。德國科研NanoscribeQuantum X

這項技術具有快速、精確和可定制的特點。德國科研NanoscribeQuantum X

**是全世界一個主要死亡原因,2020年有近1000萬人死于**[1]。而其中膠質母細胞瘤是一種極具破壞性的腦**,其*細胞增殖非??烨揖哂?*性。為了研究、***和破壞腦腫瘤細胞,研究人員正在研究使用質子放射***,該***手段已被證明在不同**類型中比x射線放射***更有效和微創(chuàng)的技術。然而,質子放射***的成本很高,這使得在動物和人類身上進行的試驗也變得非常昂貴,幾乎無法進行。質子放射***的高成本也導致缺乏從細胞水平了解質子對膠質母細胞瘤影響的臨床研究。體外模型為評估*細胞對藥物和輻射的反應提供了一個平臺。然而,由于無法模擬體內自然發(fā)生的3D環(huán)境,傳統(tǒng)2D單層細胞培養(yǎng)存在很大局限性。為了尋找更真實的模擬環(huán)境,代爾夫特理工大學(DelftUniversityofTechnology)的科學家們利用Nanoscribe的3D微納加工系統(tǒng)制作了3D工程細胞微環(huán)境,并且***次在質子束放射實驗中研究了所培養(yǎng)的膠質母細胞瘤細胞3D打印支架,以探究其對輻射的反應。令人印象深刻的是,該實驗結果顯示,與2D單層細胞相比,3D工程細胞培養(yǎng)中的DNA損傷得到了***降低。德國科研NanoscribeQuantum X