國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野

來(lái)源: 發(fā)布時(shí)間:2025-06-28

其實(shí)電子顯微鏡相比于光學(xué)顯微鏡的重要優(yōu)勢(shì)或者存在的比較大意義,準(zhǔn)確的來(lái)說(shuō),不在于放大倍數(shù),而在于超高的分辨率。這兩者是不同的。通俗的來(lái)說(shuō),就是進(jìn)行觀察的時(shí)候,除了要將物體放大,還需要能將它與相鄰的其他物體分辨開(kāi)來(lái)。如果兩個(gè)相鄰微粒的圖像在光學(xué)顯微鏡下,即使放大到很大,看到的可能卻是兩個(gè)相交的亮斑(艾里斑),而沒(méi)有明顯的界限(更不用說(shuō)細(xì)節(jié)了),這表示是分辨率不夠。拋開(kāi)分辨率談放大倍數(shù)是沒(méi)有意義的。光學(xué)顯微鏡的分辨率極限是阿貝極限,約等于光波波長(zhǎng)的一半,通常被說(shuō)成是光學(xué)顯微鏡放大極限,其實(shí)準(zhǔn)確地來(lái)說(shuō),應(yīng)該叫做分辨率的極限。而其產(chǎn)生的原因是光的衍射,根本原因是光的波粒二象性。電子衍射實(shí)驗(yàn)證明了電子的波動(dòng)性,于是用電子代替光的電子顯微鏡成為可能。電子顯微鏡也有多種,題主說(shuō)的是像REM的。電鏡也存在用衍射規(guī)則觀察的,比如低能電子衍射(LEED)和透射電鏡(TEM)。兩者主要用于觀察晶體,根據(jù)其周期性的特點(diǎn)而生成倒易空間里的衍射圖像,借助elward球或者傅里葉變換就可以轉(zhuǎn)換到實(shí)空間,得到真正的晶體表面圖像了。如果已經(jīng)有了飛秒光,就可以幾套雙光子顯微鏡共享一臺(tái),只需分光即可。國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野

國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野,雙光子顯微鏡

配合雙光子激發(fā)技術(shù),激光共聚掃描顯微鏡則能更好得發(fā)揮功效。那么,什么是雙光子激發(fā)技術(shù)呢?在高光子密度的情況下,熒光分子可以同時(shí)吸收2個(gè)長(zhǎng)波長(zhǎng)的光子使電子躍遷到較高能級(jí),經(jīng)過(guò)一個(gè)很短的時(shí)間后,電子再躍遷回低能級(jí)同時(shí)放出一個(gè)波長(zhǎng)為長(zhǎng)波長(zhǎng)一半的光子(P=h/λ)。利用這個(gè)原理,便誕生了雙光子激發(fā)技術(shù)。雙光子顯微鏡使用長(zhǎng)波長(zhǎng)脈沖激光,通過(guò)物鏡匯聚,由于雙光子激發(fā)需要很高的光子密度,而物鏡焦點(diǎn)處的光子密度是比較高的,所以只有在焦點(diǎn)處才能發(fā)生雙光子激發(fā),產(chǎn)生熒光,該點(diǎn)產(chǎn)生的熒光再次穿過(guò)物鏡,被光探頭接收,從而達(dá)到逐點(diǎn)掃描的效果。2PPLUS雙光子顯微鏡成像技術(shù)雙光子顯微鏡品牌有哪些?

國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野,雙光子顯微鏡

1990年初,當(dāng)WinfriedDenk剛從康奈爾大學(xué)博士畢業(yè)準(zhǔn)備前往瑞士讀博后時(shí),他看了一本關(guān)于激光掃描顯微鏡的書(shū),從中了解到非線性光學(xué)效應(yīng)——強(qiáng)光和物質(zhì)的相互作用。當(dāng)時(shí),Denk有同事研究生物樣品中的鈣離子但苦于沒(méi)有強(qiáng)大的紫外激光器和光學(xué)元件,于是他就想到如果使用雙光子吸收就能夠繞開(kāi)紫外,換言之,與其通過(guò)一個(gè)紫外光子激發(fā)標(biāo)記的鈣離子,通過(guò)兩個(gè)雙倍波長(zhǎng)的可見(jiàn)光光子也能激發(fā)相同的熒光。有了想法后馬上實(shí)驗(yàn)。借了一套染料飛秒激光器,Denk聯(lián)合他的導(dǎo)師WattWebb及其博士生JamesStrickler只用六個(gè)小時(shí)就完成了實(shí)驗(yàn)搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。

首先,雙光子成像采用波長(zhǎng)范圍約在700~1000nm的近紅外光激發(fā),在組織中的散射系數(shù)較小,穿透性很好,因此非常適合厚樣本的觀察。同時(shí),由于是近紅外光激發(fā),也能避免樣品中激發(fā)波長(zhǎng)較短的自發(fā)熒光物質(zhì)的干擾,可獲得較強(qiáng)的熒光信號(hào)(如下圖)。所以雙光子成像具有較深的穿透力和較小的光毒性。通常在活物腦組織中雙光子顯微鏡有效成像深度可達(dá)200~500μm,能夠較好地進(jìn)行三維成像。雙光子成像的另一大優(yōu)勢(shì)在于精確的空間點(diǎn)聚焦性。一般條件下,物質(zhì)只會(huì)被單光子激發(fā),只有在光子密度足夠高的情況下,物質(zhì)才會(huì)吸收兩個(gè)光子從而被激發(fā),所以,雙光子只會(huì)在光子密度蕞高的物鏡焦點(diǎn)附近發(fā)生,很少產(chǎn)生焦平面外的雜散光(如下圖)。這種性質(zhì)既提高了成像質(zhì)量,也降低了樣本的光漂白、光損傷區(qū)域?;谶@些優(yōu)勢(shì),使得雙光子顯微鏡非常適合對(duì)活細(xì)胞、活組織進(jìn)行長(zhǎng)時(shí)間在體成像。雙光子顯微鏡使用長(zhǎng)波長(zhǎng)脈沖光,是通過(guò)物鏡匯聚的。

國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野,雙光子顯微鏡

雙光子顯微鏡(2PM)可以對(duì)鈣離子傳感器和谷氨酸傳感器進(jìn)行亞細(xì)胞分辨率的成像,從而測(cè)量不透明腦深部的活動(dòng)。成像膜的電壓變化可以直接反映神經(jīng)元的活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來(lái)說(shuō)太快了。目前,電壓成像主要由寬視場(chǎng)顯微鏡實(shí)現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時(shí)間延遲的聚焦陣列。然后,該模塊被集成到一個(gè)帶有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是重復(fù)頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個(gè)脈沖焦點(diǎn),脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像。虛光源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。雙光子顯微鏡的探測(cè)器,該怎么選用?國(guó)內(nèi)investigator雙光子顯微鏡供應(yīng)商

雙光子顯微鏡將得到更大的發(fā)展與更廣的應(yīng)用。國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野

使用雙光子顯微鏡可以以亞細(xì)胞分辨率對(duì)鈣離子傳感器和谷氨酸傳感器成像,從而測(cè)量不透明大腦深處的活動(dòng);成像膜電壓變化能直接反映神經(jīng)元活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來(lái)說(shuō)太快。目前電壓成像主要通過(guò)寬場(chǎng)顯微鏡實(shí)現(xiàn),但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對(duì)膜電壓變化進(jìn)行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過(guò)FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,從而導(dǎo)致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。國(guó)內(nèi)布魯克雙光子顯微鏡的成像視野