比較兩表格中的相關參數(shù)可以看出,基于分子光學標記的成像技術已經在生物活檢和基因表達規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實現(xiàn)對分子代謝的成像,空間分辨率∶1-2mm,時間分辨率;分鐘量級。與PET比較,光學成像的應用場合更廣(可測量更多的參數(shù),請參見表1-1),且具有更高的時間分辨率(秒級),空間分辨率可達到微米。因此,二者相比,雖然光學成像在測量深度方面不及PET,但在測量參數(shù)種類與時空分辨率方面有一定優(yōu)勢。對于小動物(如小白鼠)研究來說,光學成像技術可以實現(xiàn)小動物整體成像和在體基因表達成像。例如,初步研究表明,熒光介導層析成像可達到近10cm的測量深度;基于多光子激發(fā)的顯微成像技術可望實現(xiàn)小鼠體內基因表達的實時在體成像。世界多光子激光掃描顯微鏡產業(yè)主要布局在德國和日本,德國是徠卡顯微系統(tǒng)和蔡司。bruker多光子顯微鏡成像區(qū)域
基于多光子顯微鏡的神經成像技術原理:多光子顯微鏡可用于深度成像和三維成像,因此可用于拍攝不透明的厚樣品。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。雙光子顯微鏡的結構與共焦類似,區(qū)別在于:1)雙光子顯微鏡的激發(fā)光波長比共焦長,能量較低,但穿透能力較強;2)雙光子顯微鏡沒有小孔,提高了檢測效率;3)雙光子顯微鏡成像深度較快提高。那么,為什么雙光子能具有共焦顯微鏡所沒有的優(yōu)勢呢?原因是它采用雙光子激發(fā)方式。使用波長較長的激發(fā)光子,光子的能量較低,因此電子需要吸收兩個這樣的激發(fā)光子才能達到激發(fā)態(tài),從而釋放出一個熒光光子。因此,熒光信號的強度與光強的平方成正比。因為焦點處的光強較大,只能在焦點處激發(fā)熒光。波長越長,穿透力越強,因此雙光子顯微鏡的成像深度大于共焦顯微鏡。由于兩個光子只在焦點激發(fā)熒光,不需要小孔,而是將所有的熒光都收集起來,提高了檢測效率。三光子顯微鏡的原理類似于雙光子顯微鏡,利用三個激發(fā)光子可以實現(xiàn)更深的成像深度。由于使用了更長的激發(fā)波長,穿透能力更強,成像深度更大。此外,由于較強的非線性效應,熒光信號的強度與光強的立方成正比,因此比雙光子具有更低的非聚焦激發(fā)和背景噪聲。激光掃描多光子顯微鏡飛秒激光點掃描多光子顯微鏡可以深入樣本并捕捉高質量的圖像,但這個過程極其緩慢,因為圖像是一次形成一個點。
在多光子顯微鏡(也稱為非線性或雙光子顯微鏡)中,以兩倍正常激發(fā)波長照射樣品。更長的波長是有利的,因為它們可以更深地穿透樣品進行3D成像,并且因為它們不會損壞樣品,從而延長樣品壽命。為了實現(xiàn)多光子激發(fā),照明光束在空間上聚焦(使用光學器件),同時使用高能短脈沖激發(fā)光束以提高兩個(或更多)光子同時到達同一位置(即熒光團分子)的概率。多光子顯微技術的例子包括二次諧波產生(SHG)、三次諧波產生(THG)、相干反斯托克斯拉曼光譜(CARS)和受激發(fā)射耗盡(STED)顯微技術。由于這些技術中的每一種都使用脈沖激光器,因此選擇能夠比較大限度地減少脈沖色散的光學組件很重要,并且激光反射二向色鏡應具有低GDD特性。
快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現(xiàn)3D成像的手段。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現(xiàn)軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠程聚焦、SLM和可調電動透鏡。多光子激光掃描顯微鏡更能解決生物組織中深層物質的層析成像問題, 擴大了應用范圍。
使用MPM對神經元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經元,這樣不僅避免掃描到任何未標記的神經纖維,還可以優(yōu)化激光束的掃描時間。隨機訪問掃描可以通過聲光偏轉器(AOD)來實現(xiàn),其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產生的聲波引起周期性的折射率光柵,激光束通過光柵時發(fā)生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現(xiàn)一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現(xiàn)3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現(xiàn)運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被普遍的使用。帶寬足以覆蓋鈦藍寶石激光器的可調諧范圍和用于多光子顯微鏡的許多其它激光器的典型中心頻率。美國共聚焦多光子顯微鏡技術
雙光子共聚焦顯微鏡比單光子共聚焦顯微鏡具有更亮的橫向分辨率和縱向分辨率。bruker多光子顯微鏡成像區(qū)域
在生物成像中,我司多光子顯微鏡具有清晰,快速,深層,活這四個方面。結合了多光子上轉化材料以及時間編碼的結構光超分辨技術,實現(xiàn)了快速(50MHz的掃描速度),超分辨(超衍射極限)成像。作為一種新的高速,超高分辨率的成像系統(tǒng),MUTE-SIM可以幫助我們對快速運動的生物圖像進行分辨率高的成像。盡管關于深度成像的應用我們沒有進一步展示,但是結合1560nm近紅外光相對于可見光更佳的穿透性,我們相信該技術將有利于對生物組織進行高速,超分辨,高深度地成像,有助于生物影像學的發(fā)展。滔博生物TOP-Bright是一家集研發(fā),生產,銷售于一體的專注于神經科學產品及致力于向高校、科研機構等領域提供實驗室一體化方案的高科技企業(yè)。業(yè)務服務范圍已遍布至全國各地幾百家實驗室。目前公司主營產品是享譽全球的國際品牌和產品,這些儀器設備都是科學研究所必備且不可替代的基礎儀器。bruker多光子顯微鏡成像區(qū)域