無機PEDOTOPV

來源: 發(fā)布時間:2022-04-29

近年來,工程師們一直在開發(fā)各種創(chuàng)新和有前途的電子裝置。其中包括電致變色裝置(ECD),它是一種能夠以可逆方式控制光學特性的系統(tǒng),如光的傳輸、吸收、反射或發(fā)射。電致變色裝置可以有許多有趣的應用,例如,在制造提高建筑物能源效率的智能窗戶、鏡子和電子設備的替代顯示器方面。近年來開發(fā)的許多電致變色裝置利用固態(tài)無機或有機材料(如Ta2O5和ZrO2)作為電解質。固態(tài)電致變色裝置已被發(fā)現(xiàn)對創(chuàng)造智能窗特別有希望。然而,這些設備已經(jīng)被發(fā)現(xiàn)達到了有限的離子擴散速度,這導致它們隨著時間的推移非常緩慢地著色和漂白。中國科學院的研究人員**近開發(fā)了新的電致變色裝置,可以快速切換顏色,因此可以**超過以前提出的解決方案。在《自然-電子學》上發(fā)表的一篇論文中介紹的這些設備,是基于他們設計的一個全固態(tài)串聯(lián)結構。PEDOT 用于電致變色中原理。無機PEDOTOPV

唐江教授和他的團隊提出了一種快速熱蒸發(fā)(RTE)的方法來獲得高質量的CdSe薄膜,并設計了CdSe薄膜太陽能電池。這項題為Rapidthermalevaporationforcadmiumselenidethin-filmsolarcells的研究發(fā)表在2021年12月6日的FrontiersofOptoelectronics上。在這項研究中,RTE被用來沉積硒化鎘薄膜,這些薄膜表現(xiàn)出高的晶體質量,具有大的晶粒尺寸和優(yōu)先的晶體方向。同時,720納米處的尖銳吸收邊緣表明CdSe薄膜的直接帶隙為1.72eV。強烈的光致發(fā)光,半滿寬度為23納米,顯示出CdSe薄膜的缺陷相對較少。基于高質量的CdSe薄膜,我們引入了合適的電子傳輸層(ETL)和空穴傳輸層(HTL)來構建CdSe太陽能電池。***,通過設計FTO/ZnO/CdS/CdSe/PEDOT/CuI的比較好配置,效率達到了1.88%。這項研究***開發(fā)了一種RTE方法來沉積CdSe薄膜,并對其光電性能進行了系統(tǒng)的描述。此外,它還展示了CdSe太陽能電池的設備設計和優(yōu)化的一般規(guī)則。它還指出了CdSe薄膜及其太陽能電池的優(yōu)點。未來,CdSe太陽能電池在硅基串聯(lián)應用中具有很大的潛力,這值得進一步研究。標準PEDOTPEDOT:PSS薄膜的拉曼主峰向高波數(shù)移動是什么原因?

該方法提供了一種新的方法,利用一個尺寸與病毒顆粒相當?shù)南到y(tǒng)-納米粒子探針來監(jiān)測大腦中的電活動。神經(jīng)元使用電信號來相互傳遞信息,使這些信號對思維、記憶和運動至關重要。雖然有許多既定的方法來跟蹤大腦的電活動,但大多數(shù)都需要通過手術或植入設備來穿透頭骨并直接與神經(jīng)元對接。研究人員將他們的新技術命名為NeurophotonicSolution-dispersibleWirelessActivityReportersforMassivelyMultiplexedMeasurements,或NeuroSWARM3。該方法涉及將工程化的電-等離子體納米粒子引入大腦,將電信號轉化為光信號,從而可以用身體外的光學探測器跟蹤大腦活動。這些納米粒子包括一個直徑為63納米的氧化硅**,上面有一層薄薄的電致變色的聚(3,4-亞乙二氧基噻吩)和一個5納米厚的金涂層。因為它們的涂層允許它們穿過血腦屏障,所以它們可以被注射到血液中或直接進入腦脊液。

有機半導體的摻雜對于有機(光)電子和電化學設備的運行至關重要。通常情況下,這是通過向聚合物體添加異質摻雜分子來實現(xiàn)的,由于摻雜物的升華或聚集,往往導致穩(wěn)定性和性能不佳。在小分子供體-受體系統(tǒng)中,電荷轉移可以產(chǎn)生高而穩(wěn)定的電導率,這種方法尚未在全共軛聚合物系統(tǒng)中得到探索。在此,我們報告了全聚合物供體-受體異質結中的基態(tài)電子轉移。將低電離能量的聚合物與高電子親和力的對應物結合在一起,產(chǎn)生了導電界面,其電阻率值比單獨的單層聚合物低五到六個數(shù)量級。電阻率的大幅下降源于兩個平行的準二維電子和空穴分布,其濃度達到~1013 cm-2。此外,我們將這一概念轉移到三維塊狀異質結上,由于沒有分子摻雜物,顯示出特殊的熱穩(wěn)定性。我們的研究結果為潛在的電活性復合材料提供了希望,例如,熱電和可穿戴電子設備。小白一個,誠心求助PEDOT的比熱容的值,查了好多文獻沒看到.

根部沒有角質層,因此表皮細胞和細胞壁機械直接暴露在共軛三聚體中進行體內聚合。因此,年輕的豆類植物的根被浸泡在新制備的共軛三聚體的水溶液中,ETE-S(1毫克毫升)(圖1A)。根系的其余部分被保存在富含營養(yǎng)的溶液中。隨著時間的推移,我們觀察到根部有一層黑色的涂層,表明聚合物的形成。使用紫外-可見光譜對根部提取物進行確認,在那里觀察到p(ETE-S)的特征峰(圖S1,ESI?11,23)。為了揭示根部的聚合動力學,我們進行了時間推移顯微鏡,并在現(xiàn)場監(jiān)測聚合物的形成(圖S2,ESI?)。選定的圖像顯示在圖1B。在**初的60分鐘內,根的表面沒有明顯的顏色變化,表明聚合非常少。隨著時間的推移,根部變得更深,聚合物在表皮細胞上形成;300分鐘后,根部被聚合物覆蓋。為了進一步了解動力學,我們在選定的時間點對根的顏色變化進行了量化,這與根表面的聚合物數(shù)量相對應(圖S3,ESI?)。聚合物的數(shù)量隨著時間的推移而增加,**初是緩慢的動力學,然后是較快的動力學,接著是飽和度達到90%(圖1C,圖S4,ESI?)。銀線經(jīng)過紫外臭氧處理后,浸漬PEDOT:PSS,干燥后,PEDOT:PSS還是從銀線上剝落了。如何避免?導電性電致變色PEDOT

我想知道一些物質的載流子濃度,不知道在哪里查:pedot:PSS,聚吡咯,之類的。無機PEDOTOPV

纖維素線的生產(chǎn)過程是由來自芬蘭阿爾托大學的合作者開發(fā)的。在隨后的過程中,查爾姆斯大學的研究人員通過用導電的聚合材料對線進行染色使其具有導電性。研究人員的測量結果表明,染色過程使纖維素線具有創(chuàng)紀錄的高導電性--通過添加銀納米線,其導電性甚至可以進一步提高。在測試中,電導率在多次洗滌后仍能保持。深色的紗線是纖維素紗線,淺色的是市售的鍍銀紗線,兩者都具有導電性。研究人員將這兩根線分別縫在織物中,以一種特殊的方式使織物具有熱電子特性。資料來源:Anna-LenaLundqvist/查爾姆斯科技大學無機PEDOTOPV

上海歐依有機光電材料有限公司是一家從事有機光電材料、環(huán)保、清潔能源領域的技術開發(fā)、技術咨詢、技術服務、技術轉讓,電子材料、電子元器件及產(chǎn)品、化工原料及產(chǎn)品(除危險化學品、監(jiān)控化學品、民用物品、易制毒化學品)、儀器儀表、管道配件、機械設備及配件、文化辦公用品、工藝品的銷售的公司,致力于發(fā)展為創(chuàng)新務實、誠實可信的企業(yè)。公司自創(chuàng)立以來,投身于PEDOT/PSS,透明導電油墨,是精細化學品的主力軍。歐依有機光電材料不斷開拓創(chuàng)新,追求出色,以技術為先導,以產(chǎn)品為平臺,以應用為重點,以服務為保證,不斷為客戶創(chuàng)造更高價值,提供更優(yōu)服務。歐依有機光電材料創(chuàng)始人李元尨,始終關注客戶,創(chuàng)新科技,竭誠為客戶提供良好的服務。

標簽: PEDOT