從雙光子的原理和特點我們就可以明顯的得出雙光子的優(yōu)點:☆光損傷?。河捎陔p光子顯微鏡使用的是可見光或近紅外光作為激發(fā)光源,這一波段的光對細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質(zhì)的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內(nèi);☆漂白區(qū)域?。河捎诩ぐl(fā)只存在于交點處,所以焦點以外的區(qū)域都不會發(fā)生光漂白現(xiàn)象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器(共焦),這樣就...
由于具有較高輸出功率的光源可以提高成像速度,在我們的實驗中,時間分辨率主要是受OPO輸出可見光激光功率的限制。盡管在單點掃描系統(tǒng)中,v2PE激發(fā)會使得空間分辨率提高,但多聚焦v2PE顯微鏡具有與1PE多聚焦顯微鏡近乎相同的橫向分辨率,這主要是多聚焦成像和單點掃描技術(shù)之間的差異造成的。由于v2PE的激發(fā)體積小于1PE,引入圖像掃描技術(shù)可以進一步提高空間分辨率,這種技術(shù)需要通過在陣列前引入額外的微透鏡陣列來實現(xiàn)。除此之外,由于可見光區(qū)域的共振效應(yīng),可能會產(chǎn)生光漂白,因而為了延長觀察時間,系統(tǒng)還需要對激發(fā)強度和曝光時間做進一步優(yōu)化。雙光子顯微鏡中,同樣每個時刻只有焦平面上一個點的信號被探測,并且連焦...
從雙光子的原理和特點我們就可以明顯的得出雙光子的優(yōu)點:☆光損傷?。河捎陔p光子顯微鏡使用的是可見光或近紅外光作為激發(fā)光源,這一波段的光對***細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質(zhì)的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內(nèi);☆漂白區(qū)域?。河捎诩ぐl(fā)只存在于交點處,所以焦點以外的區(qū)域都不會發(fā)生光漂白現(xiàn)象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器(共焦**...
細胞內(nèi)鈣離子作為重要的信號分子其作用具有時間性和空間性。當(dāng)個細胞興奮時,產(chǎn)生了一個電沖動,此時,細胞外的鈣離子流入該細胞內(nèi),促使該細胞分泌神經(jīng)遞質(zhì),神經(jīng)遞質(zhì)與相鄰的下一級神經(jīng)細胞膜上的蛋白分子結(jié)合,促使這一級神經(jīng)細胞產(chǎn)生新的電沖動。以此類推,神經(jīng)信號便一級一級地傳遞下去,從而構(gòu)成復(fù)雜的信號體系,終形成學(xué)習(xí)、記憶等大腦的高級功能。在哺乳動物神經(jīng)系統(tǒng)中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態(tài)下大部分神經(jīng)元細胞內(nèi)鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經(jīng)遞質(zhì)的過程必不可少。眾所周知,只有游離鈣才具有生物學(xué)活性,而細胞質(zhì)...
微型化雙光子熒光顯微成像改變了在自由活動動物中觀察細胞和亞細胞結(jié)構(gòu)的方式,可用于在動物覓食、哺乳、跳臺、打斗、嬉戲、睡眠等自然行為條件下,或者在學(xué)習(xí)前、學(xué)習(xí)中和學(xué)習(xí)后,長時程觀察神經(jīng)突觸、神經(jīng)元、神經(jīng)網(wǎng)絡(luò)、遠程連接的腦區(qū)等多尺度、多層次動態(tài)變化。該成果在2016年底美國神經(jīng)科學(xué)年會、2017年5月冷泉港亞洲腦科學(xué)專題會議上報告后,得到包括多位諾貝爾獎獲得者在內(nèi)的國內(nèi)外神經(jīng)科學(xué)家的高度贊譽。冷泉港亞洲腦科學(xué)專題會議、美國明顯神經(jīng)科學(xué)家加州大學(xué)洛杉磯分校的Alcino J Silva教授在評述中寫道,“從任何一個標(biāo)準(zhǔn)來看,這款顯微鏡都了一項重大技術(shù)發(fā)明,必將改變我們在自由活動動物中觀察細胞和亞細胞...
從雙光子的原理和特點我們就可以明顯的得出雙光子的優(yōu)點:☆光損傷?。河捎陔p光子顯微鏡使用的是可見光或近紅外光作為激發(fā)光源,這一波段的光對細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質(zhì)的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內(nèi);☆漂白區(qū)域?。河捎诩ぐl(fā)只存在于交點處,所以焦點以外的區(qū)域都不會發(fā)生光漂白現(xiàn)象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器(共焦),這樣就...
2008年錢永健等人由于熒光蛋白(GFP,綠色熒光蛋白)的發(fā)現(xiàn)和使用,獲得了諾貝爾化學(xué)獎,是對熒光成像技術(shù)的一次巨大肯定和推動。光學(xué)成像本身具有高分辨率、高通量、非侵入和非毒性等特點,再與熒光蛋白以及熒光染料等標(biāo)記物在細胞中的定位與表達技術(shù)相結(jié)合,使得科學(xué)家可以特異性的分辨生物體乃至細胞內(nèi)部不同結(jié)構(gòu)與成分,并且能夠在生命體和細胞仍具有活性的狀態(tài)下(狀態(tài))對其功能進行動態(tài)觀察。這就使得熒光成像技術(shù)成為了無可替代的,生物學(xué)家現(xiàn)今較為重要的技術(shù)手段之一。目前,大多數(shù)細胞生物學(xué)和生理學(xué)研究主要還是在離體培養(yǎng)的細胞體系中研究。然而與細胞生物學(xué)研究有所不同的是,大腦的功能研究的整體性和原位性顯得更加關(guān)鍵:...
像差問題一直困擾著光學(xué)領(lǐng)域的工作者。像差會使光波前發(fā)生形變,不僅降低成像的信噪比和分辨率,使得很多時候我們只能“霧里看花”,更甚者,產(chǎn)生贗像,或無法獲得有意義的圖像。像差問題對雙光子成像的影響尤為嚴(yán)重,因為在那里,熒光信號對入射光強度的依賴是平方關(guān)系,一旦入射光波前形變,不僅聚焦強度大幅下降,成像分辨率也急劇惡化。因此,如何解決像差問題,實現(xiàn),例如小鼠大腦皮層,深層區(qū)域的高質(zhì)量成像成為光學(xué)成像發(fā)展中相當(dāng)有挑戰(zhàn)性的問題之一。雙光子顯微鏡觀察到的現(xiàn)象證明了鈣離子的增加依賴于肌體觸發(fā)的鈉離子作用電勢。美國激光雙光子顯微鏡價位細胞內(nèi)鈣離子作為重要的信號分子其作用具有時間性和空間性。當(dāng)個細胞興奮時,產(chǎn)生...
雙光子顯微鏡是結(jié)合了雙光子激發(fā)技術(shù)和激光掃描共聚顯微鏡的一種新型熒光顯微鏡,其原理大致是這樣的:首先,讓我們來看看什么是熒光顯微鏡。熒光顯微鏡是以紫外線為光源,照射被檢物體上的熒光物質(zhì)或是熒光染料,使其發(fā)出熒光。相比普通光學(xué)顯微鏡,熒光顯微鏡運用了波長更短的紫外線,再將可見光過濾掉,提高了分辨力率。而當(dāng)被檢物體過厚時,從不同深度發(fā)出的熒光都會打在物鏡上,使觀察到的像模糊、發(fā)虛,無法清楚的知道被檢物體的結(jié)構(gòu)。而激光掃描共聚顯微鏡就是在熒光顯微鏡的基礎(chǔ)上,增加了激光掃描裝置,從而解決了上述問題。激光共聚掃描顯微鏡脫離了傳統(tǒng)光學(xué)顯微鏡的場光源和局部平面成像模式,采用激光束作光源,激光束經(jīng)照明孔,經(jīng)由...
美國霍華德·休斯醫(yī)學(xué)研究所在Janelia Farm ResearchCampus的吉娜博士小組與來自中科院上海光機所強場激光物理國家重點實驗室的王琛博士較近成功將一種新的自適應(yīng)光學(xué)的方法和雙光子顯微鏡結(jié)合,研制出一種新的自適應(yīng)光學(xué)雙光子熒光顯微鏡。通過校正小鼠大腦的像差,在視覺皮層的不同深度處均獲得了提高數(shù)倍的成像分辨率和信號強度,明顯改進了成像質(zhì)量,使得原來在鼠腦中不可見或者模糊的細節(jié)變得清晰可見,她們成功將該方法應(yīng)用于老鼠視覺皮層第五層(約500μm)的形貌結(jié)構(gòu)成像和鈣離子功能成像。這一新的自適應(yīng)光學(xué)方法,使得在小鼠深層區(qū)域成像中獲得近衍射極限的成像分辨率成為現(xiàn)實。這一成果發(fā)表在較新一期...
2008年錢永健等人由于熒光蛋白(GFP,綠色熒光蛋白)的發(fā)現(xiàn)和使用,獲得了諾貝爾化學(xué)獎,是對熒光成像技術(shù)的一次巨大肯定和推動。光學(xué)成像本身具有高分辨率、高通量、非侵入和非毒性等特點,再與熒光蛋白以及熒光染料等標(biāo)記物在細胞中的定位與表達技術(shù)相結(jié)合,使得科學(xué)家可以特異性的分辨生物體乃至細胞內(nèi)部不同結(jié)構(gòu)與成分,并且能夠在生命體和細胞仍具有活性的狀態(tài)下(狀態(tài))對其功能進行動態(tài)觀察。這就使得熒光成像技術(shù)成為了無可替代的,生物學(xué)家現(xiàn)今較為重要的技術(shù)手段之一。目前,大多數(shù)細胞生物學(xué)和生理學(xué)研究主要還是在離體培養(yǎng)的細胞體系中研究。然而與細胞生物學(xué)研究有所不同的是,大腦的功能研究的整體性和原位性顯得更加關(guān)鍵:...
在2020年12月22日,臨研所、病理科和科研處邀請北京大學(xué)王愛民副教授做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學(xué)術(shù)報告。學(xué)術(shù)報告由臨研所醫(yī)學(xué)實驗研究平臺潘琳老師主持。王愛民,北京大學(xué)信息科學(xué)技術(shù)學(xué)院副教授,畢業(yè)于北京大學(xué)物理系,獲學(xué)士、碩士學(xué)位,后于英國巴斯大學(xué)物理系獲博士學(xué)位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動態(tài)信號,該成果獲得了2017年度“中國光學(xué)進展”和“中國科學(xué)進展”,并被Nature Methods評為2018年度“年度方法--無限制行為動物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床...
雙光子吸收理論早在1931年就由諾獎得主提出,30年后因為有了激光才得到實驗驗證,但是到WinfriedDenk發(fā)明雙光子顯微鏡又用了將近30年。要理解雙光子的技術(shù)挑戰(zhàn)和飛秒激光發(fā)揮的重要作用,首先要了解其中的非線性過程。雙光子吸收相當(dāng)于和頻產(chǎn)生非線性過程,這要求極高的電場強度,而電場取決于聚焦光斑大小和激光脈寬。聚焦光斑越小,脈寬越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只和物鏡NA和激光波長有關(guān),所以關(guān)鍵變量只剩下激光脈寬?;谝陨戏治?,能夠以高重頻(100MHz)輸出超短脈沖(100fs量級)的飛秒激光器成了雙光子顯微鏡的標(biāo)準(zhǔn)激發(fā)光源。這也再次說明雙光子顯微鏡的...
像差問題一直困擾著光學(xué)領(lǐng)域的工作者。像差會使光波前發(fā)生形變,不僅降低成像的信噪比和分辨率,使得很多時候我們只能“霧里看花”,更甚者,產(chǎn)生贗像,或無法獲得有意義的圖像。像差問題對雙光子成像的影響尤為嚴(yán)重,因為在那里,熒光信號對入射光強度的依賴是平方關(guān)系,一旦入射光波前形變,不僅聚焦強度大幅下降,成像分辨率也急劇惡化。因此,如何解決像差問題,實現(xiàn),例如小鼠大腦皮層,深層區(qū)域的高質(zhì)量成像成為光學(xué)成像發(fā)展中相當(dāng)有挑戰(zhàn)性的問題之一。雙光子顯微鏡使用高能量鎖模脈沖激光器。國內(nèi)2PPLUS雙光子顯微鏡原理隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結(jié)合它的特點,大致可以分成深和活兩個方面的提升。要想讓...
系統(tǒng)示意圖如圖1所示,紅外激光束從藍寶石激光器出射后,由一個光學(xué)參量振蕩器(OPO)轉(zhuǎn)化到可見光波段,產(chǎn)生的可見光脈沖寬度為200 fs, 重復(fù)頻率80 MHz,波長在490-750nm范圍內(nèi)可調(diào)諧。光束通過透鏡及平面鏡中繼到包含微透鏡陣列盤和陣列盤的共聚焦掃描單元中,形成用于熒光激發(fā)的多焦點光束。多焦點光束通過一個硅油浸潤的物鏡成像到樣品上,激發(fā)熒光信號。熒光信號由同一個物鏡收集并傳輸?shù)疥嚵袌A盤,產(chǎn)生共焦效應(yīng),隔離來自焦平面外的雜散光。雙光子顯微鏡的探測器,該怎么選用?熒光激光雙光子顯微鏡熒光探測高光子密度帶來的高能量容易損傷細胞,所以雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激...
從雙光子到三光子:科學(xué)家正在從雙光子轉(zhuǎn)向三光子顯微鏡。1996年,ChrisXu在康奈爾大學(xué)(Denk同導(dǎo)師實驗室)讀博期間發(fā)明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來也是自然的發(fā)展方向。三光子成像使用更長的波長,大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強和更短的激光脈沖,而傳統(tǒng)的鈦寶石激光器難以達到這些要求,但是對于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。用雙光子顯微鏡看看你的皮膚有沒有重?zé)ㄐ律贿M口激光熒光雙光子顯微鏡原理由于具有較高輸...
利用鈣成像技術(shù)記錄大腦活動,隨著功能光學(xué)成像技術(shù)的發(fā)展,神經(jīng)學(xué)家們已經(jīng)可以研究腦區(qū)和神經(jīng)元內(nèi)部的工作情況。功能鈣成像技術(shù)就是其中之一,其主要原理是將外源性熒光信號和生理現(xiàn)象耦合起來——通過熒光染料信號的改變反映細胞內(nèi)游離鈣離子濃度,以此細胞的功能狀態(tài)。目前它被廣泛應(yīng)用于實時監(jiān)測一群相關(guān)神經(jīng)元內(nèi)鈣離子的變化,從而判斷其功能活動。該技術(shù)的出現(xiàn)使得科學(xué)家可以親眼目睹神經(jīng)信號在神經(jīng)網(wǎng)絡(luò)之中時間和空間上的傳遞穿梭。雙光子顯微鏡的探測器,該怎么選用?bruker雙光子顯微鏡成像視野TOPTICAFemtoFiberultra920超快光纖激光器是一種易于操作且無需維護的激光系統(tǒng)。其輸出波長為920nm,非...
在2020年12月22日,臨研所、病理科和科研處邀請北京大學(xué)王愛民副教授做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學(xué)術(shù)報告。學(xué)術(shù)報告由臨研所醫(yī)學(xué)實驗研究平臺潘琳老師主持。王愛民,北京大學(xué)信息科學(xué)技術(shù)學(xué)院副教授,畢業(yè)于北京大學(xué)物理系,獲學(xué)士、碩士學(xué)位,后于英國巴斯大學(xué)物理系獲博士學(xué)位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動態(tài)信號,該成果獲得了2017年度“中國光學(xué)進展”和“中國科學(xué)進展”,并被Nature Methods評為2018年度“年度方法--無限制行為動物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床...
雙光子顯微鏡是結(jié)合了雙光子激發(fā)技術(shù)和激光掃描共聚顯微鏡的一種新型熒光顯微鏡,其原理大致是這樣的:首先,讓我們來看看什么是熒光顯微鏡。熒光顯微鏡是以紫外線為光源,照射被檢物體上的熒光物質(zhì)或是熒光染料,使其發(fā)出熒光。相比普通光學(xué)顯微鏡,熒光顯微鏡運用了波長更短的紫外線,再將可見光過濾掉,提高了分辨力率。而當(dāng)被檢物體過厚時,從不同深度發(fā)出的熒光都會打在物鏡上,使觀察到的像模糊、發(fā)虛,無法清楚的知道被檢物體的結(jié)構(gòu)。而激光掃描共聚顯微鏡就是在熒光顯微鏡的基礎(chǔ)上,增加了激光掃描裝置,從而解決了上述問題。激光共聚掃描顯微鏡脫離了傳統(tǒng)光學(xué)顯微鏡的場光源和局部平面成像模式,采用激光束作光源,激光束經(jīng)照明孔,經(jīng)由...
共聚焦顯微可以呈現(xiàn)這么漂亮的圖像,是不是什么樣品都可以用共聚焦顯微鏡拍拍拍.....得到各種各樣清晰漂亮的圖像呢?答案是否定的,任何事物都有優(yōu)缺點,何況一臺儀器呢,共聚焦顯微鏡也是有自己的局限,共聚焦有哪些局限呢:1.共聚焦顯微鏡只能拍攝約200um以內(nèi)的的樣品,對于厚的或者樣品不能進拍攝;2. 共聚焦顯微鏡由于是逐點進行掃描,對樣品的光毒性還是比較大的,特別是拍攝活細胞樣品時就更容易對樣品進行淬滅;3. 由于光照射的區(qū)域幾乎能通過這個Z軸的層面,所以對于空間定點光刺激的實驗定點位置就不是特別精確;并且激光共聚焦顯微鏡沒有純紫外進行激發(fā),對于一些特殊激發(fā)波長的實驗,效率非常低。雙光子顯微鏡使用...
從雙光子的原理和特點我們就可以明顯的得出雙光子的優(yōu)點:☆光損傷?。河捎陔p光子顯微鏡使用的是可見光或近紅外光作為激發(fā)光源,這一波段的光對***細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質(zhì)的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內(nèi);☆漂白區(qū)域?。河捎诩ぐl(fā)只存在于交點處,所以焦點以外的區(qū)域都不會發(fā)生光漂白現(xiàn)象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器(共焦**...
細胞內(nèi)鈣離子作為重要的信號分子其作用具有時間性和空間性。當(dāng)個細胞興奮時,產(chǎn)生了一個電沖動,此時,細胞外的鈣離子流入該細胞內(nèi),促使該細胞分泌神經(jīng)遞質(zhì),神經(jīng)遞質(zhì)與相鄰的下一級神經(jīng)細胞膜上的蛋白分子結(jié)合,促使這一級神經(jīng)細胞產(chǎn)生新的電沖動。以此類推,神經(jīng)信號便一級一級地傳遞下去,從而構(gòu)成復(fù)雜的信號體系,終形成學(xué)習(xí)、記憶等大腦的高級功能。在哺乳動物神經(jīng)系統(tǒng)中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態(tài)下大部分神經(jīng)元細胞內(nèi)鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經(jīng)遞質(zhì)的過程必不可少。眾所周知,只有游離鈣才具有生物學(xué)活性,而細胞質(zhì)...
而配合了雙光子激發(fā)技術(shù),激光共聚掃描顯微鏡則能更好得發(fā)揮功效。那么,什么是雙光子激發(fā)技術(shù)呢?在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子使電子躍遷到較高能級,經(jīng)過一個很短的時間后,電子再躍遷回低能級同時放出一個波長為長波長一半的光子(P=h/λ)。利用這個原理,便誕生了雙光子激發(fā)技術(shù)。雙光子顯微鏡使用長波長脈沖激光,通過物鏡匯聚,由于雙光子激發(fā)需要很高的光子密度,而物鏡焦點處的光子密度是比較高的,所以只有在焦點處才能發(fā)生雙光子激發(fā),產(chǎn)生熒光,該點產(chǎn)生的熒光再穿過物鏡,被光探頭接收,從而達到逐點掃描的效果。雙光子顯微鏡型號有哪些?國外ultimainvestigator雙光子顯微鏡...
利用鈣成像技術(shù)記錄大腦活動,隨著功能光學(xué)成像技術(shù)的發(fā)展,神經(jīng)學(xué)家們已經(jīng)可以研究腦區(qū)和神經(jīng)元內(nèi)部的工作情況。功能鈣成像技術(shù)就是其中之一,其主要原理是將外源性熒光信號和生理現(xiàn)象耦合起來——通過熒光染料信號的改變反映細胞內(nèi)游離鈣離子濃度,以此細胞的功能狀態(tài)。目前它被廣泛應(yīng)用于實時監(jiān)測一群相關(guān)神經(jīng)元內(nèi)鈣離子的變化,從而判斷其功能活動。該技術(shù)的出現(xiàn)使得科學(xué)家可以親眼目睹神經(jīng)信號在神經(jīng)網(wǎng)絡(luò)之中時間和空間上的傳遞穿梭。上海雙光子顯微鏡就找因斯蔻浦。進口熒光激光雙光子顯微鏡廠家有哪些和很多偉大的科學(xué)發(fā)明一樣,雙光子顯微鏡的出現(xiàn)也有一點偶然,但正是那瞬間的靈感為生物科學(xué)尤其是神經(jīng)科學(xué)帶來了一種**性的成像技術(shù):...
為了驗證動物生物樣品的時間分辨成像能力,本實驗觀察了活海拉細胞高爾基體中的青色熒光蛋白mTFP1,見圖3(a),(c)-(i)。使用的物鏡及尺寸與熒光顆粒成像一致,對比可見v2PE在空間分辨率、激發(fā)深度級圖像對比度較常規(guī)寬場顯微鏡都有所提高。此外,v2PE可以同時激發(fā)多個波長的熒光蛋白,這種技術(shù)還可以應(yīng)用于細胞內(nèi)分子的三維動力學(xué)多色成像。在此基礎(chǔ)上,實驗對海拉細胞中的高爾基體(mTFP1)和纖顫蛋白(EGFP)進行了在體成像,見圖3(j)-(n),青色為mTFP1,綠色為EGFP,實驗中兩種熒光蛋白同時成像,終采用光譜分離法將不同蛋白的熒光信號分離出來。雙光子顯微鏡知多少。國內(nèi)雙光子顯微鏡授權(quán)...
FHIRM-TPM 2.0擴大了微型雙光子顯微鏡的適用性和實用性,使神經(jīng)科學(xué)家能夠更自由地探索更多新的行為范式,包括身體運動、長時程的復(fù)雜過程,如學(xué)習(xí)和記憶,社會互動和恐懼條件反射,甚至是慢性疾病的進展和老化,如神經(jīng)發(fā)生和再生,疾病進展和衰老,以破譯大腦的奧秘。在一批“早鳥項目”中,該系統(tǒng)已被多個研究組應(yīng)用于不同的模式動物和行為范式,如小鼠的社交新穎性識別、斑胸草雀受***調(diào)控后大腦特定神經(jīng)元變化、新型神經(jīng)遞質(zhì)乙酰膽堿探針的傳導(dǎo)適應(yīng)性分析以及獼猴三腦區(qū)成像等多項研究。依托兩代微型化雙光子成像技術(shù),該團隊還在南京市江北新區(qū)建立了規(guī)?;咄磕X功能成像的南京腦觀象臺(Nanjing Brian O...
新一代微型化雙光子熒光顯微成像系統(tǒng)的成功研制是國家重大科研儀器研制專項的一個碩果。它彰顯了北京大學(xué)在生物醫(yī)學(xué)成像領(lǐng)域先期布局的前瞻性,鍛煉了一支以年輕PI和碩博研究生為主體、具有學(xué)科交叉背景和重要技術(shù)創(chuàng)新能力的“中國智造”隊伍。目前,該研發(fā)團隊正在領(lǐng)銜建設(shè)“多模態(tài)跨尺度生物醫(yī)學(xué)成像”十三五國家重大科技基礎(chǔ)設(shè)施,積極參與即將啟動的中國腦科學(xué)計劃??梢云诖?,微型化雙光子熒光顯微成像系統(tǒng)將為實現(xiàn)“分析腦、理解腦、模仿腦”的戰(zhàn)略目標(biāo)發(fā)揮不可或缺的重要作用雙光子顯微鏡能夠進行光裂解、光轉(zhuǎn)染和光損傷等光學(xué)操縱。國外bruker雙光子顯微鏡分辨率是多少隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結(jié)合它...
Denk很快就將雙光子顯微鏡用于神經(jīng)元成像,而1997年在Svoboda測量完整老鼠大腦的錐體神經(jīng)元的感官刺激誘導(dǎo)樹突鈣離子動態(tài)后,雙光子顯微鏡的潛能開始完全凸顯。值得一提的是,霍華德·休斯醫(yī)學(xué)院Svoboda實驗室和Thorlabs在2016年合作推出了一種強大的多光子介觀顯微鏡,其成像視場達到5毫米,能夠跨多個腦區(qū)進行高速功能成像。根據(jù)清華大學(xué)單一采購來源的**指導(dǎo)意見:這種顯微鏡的視場是普通雙光子顯微鏡的10倍。30年來,雙光子顯微鏡已成為較厚生物組織三維成像中不可或缺的工具。從雙光子到三光子甚至四光子,這種非線性成像技術(shù)通常也被統(tǒng)稱為多光子顯微鏡。下圖統(tǒng)計了自1990年以來每年發(fā)表的多...
Denk很快就將雙光子顯微鏡用于神經(jīng)元成像,而1997年在Svoboda測量完整老鼠大腦的錐體神經(jīng)元的感官刺激誘導(dǎo)樹突鈣離子動態(tài)后,雙光子顯微鏡的潛能開始完全凸顯。值得一提的是,霍華德·休斯醫(yī)學(xué)院Svoboda實驗室和Thorlabs在2016年合作推出了一種強大的多光子介觀顯微鏡,其成像視場達到5毫米,能夠跨多個腦區(qū)進行高速功能成像。根據(jù)清華大學(xué)單一采購來源的**指導(dǎo)意見:這種顯微鏡的視場是普通雙光子顯微鏡的10倍。30年來,雙光子顯微鏡已成為較厚生物組織三維成像中不可或缺的工具。從雙光子到三光子甚至四光子,這種非線性成像技術(shù)通常也被統(tǒng)稱為多光子顯微鏡。下圖統(tǒng)計了自1990年以來每年發(fā)表的多...
雙光子顯微鏡的優(yōu)勢:在深度組織中以較長時間對活細胞成像,雙光子顯微鏡是當(dāng)前之選。雙光子和共聚焦顯微鏡都是通過激光激發(fā)樣品中的熒光標(biāo)記,使用探測器測量被激發(fā)的熒光。但是,共聚焦一般使用單模光纖耦合激光器,通過單光子激發(fā)熒光,而雙光子使用飛秒激光器,通過幾乎同時吸收兩個長波光子激發(fā)熒光。下面是兩種技術(shù)的對比圖。雙光子激發(fā)熒光的主要優(yōu)勢:雙光子比共聚焦使用的更長的波長,所以對組織的損傷更小且穿透更深。共聚焦的成像深度一般為100微米,雙光子則能達到250到500微米,甚至超過1毫米。另外,同時吸收兩個光子意味只有度聚焦點處能被激發(fā),所以不會損傷焦平面之外的組織,并且生成更清晰的圖像。雙光子顯微鏡使用...