北京甲基化重測序怎么解決

來源: 發(fā)布時間:2022-01-09

DNA甲基化是表觀遺傳學(xué)領(lǐng)域研究的重點之一。DNA甲基化是指在DNA甲基轉(zhuǎn)移酶(DNA methyltransferase, 縮寫DNMT)的作用下,基因組DNA序列上CpG島的二核苷酸5′端胞嘧啶轉(zhuǎn)變?yōu)?′甲基胞嘧啶(5′ methylcytosine, 縮寫5mC)。這種DNA修飾的方式并未改變基因的序列, 但能改變某些基因的表達(dá),從而影響生物學(xué)功能。DNA 甲基化參與眾多的細(xì)胞生命活動,包括細(xì)胞分化、組織特異性基因表達(dá)、基因組印記、X 染色體失活等。異常的 DNA 甲基化會導(dǎo)致發(fā)育異常、tumour等疾病的發(fā)生。重亞硫酸鹽測序本質(zhì)上就是重亞硫酸鹽轉(zhuǎn)化與二代測序(NGS)的結(jié)合。北京甲基化重測序怎么解決

真核生物基因表達(dá)受多種機(jī)制、多層面的綜合調(diào)控?;虻腄NA序列不發(fā)生改變的情況下,基因的表達(dá)水平與功能發(fā)生改變,并可遺傳現(xiàn)象,稱為表觀遺傳(epigenetic)現(xiàn)象。DNA甲基化是指在甲基轉(zhuǎn)移酶的催化下,DNA的CG二核苷酸中的胞嘧啶被選擇性的添加甲基,形成5-甲基胞嘧啶,常見于基因的5′—CG—3′序列。DNA甲基化的位置主要集中在基因5′端的非編碼區(qū),DNA高度甲基化首先會影響DNA結(jié)構(gòu),進(jìn)而阻遏基因轉(zhuǎn)錄,引起基因沉默。人體內(nèi),DNA甲基轉(zhuǎn)移酶主要有四種:DNMT1、DNMT3A、DNMT3B和DNMT3L。在DNA復(fù)制完成后,DNMT1是催化甲基轉(zhuǎn)移至新合成的DNA鏈上,這一現(xiàn)象稱為維持甲基化;DNMT3A和DNMT3B負(fù)責(zé)催化核酸鏈上新的甲基化位點發(fā)生反應(yīng),成為形成甲基化;DNMT3L不具有甲級轉(zhuǎn)移酶活性,其主要作用是調(diào)節(jié)其他甲基轉(zhuǎn)移酶的活性。真核細(xì)胞內(nèi)甲基化狀態(tài)有3種:持續(xù)的低甲基化狀態(tài)(如持家基因的甲基化)、誘導(dǎo)的去甲基化狀態(tài)(如一些發(fā)育階段特異性基因的修飾)和高度甲基化狀態(tài)(如人類女性細(xì)胞內(nèi)縊縮-失活的X染色體的甲基化)。天津甲基化重測序公司DNA甲基化是在DNA甲基化轉(zhuǎn)移酶的作用下將甲基選擇性地添加到胞嘧啶上形成5-甲基胞嘧啶(5-mC)的過程。

DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基嘌呤(N6-mA)及7-甲基鳥嘌呤(7-mG)。結(jié)構(gòu)基因含有很多CPG結(jié)構(gòu), 2CPG 和2GPC 中兩個胞嘧啶的5 位碳原子通常被甲基化, 且兩個甲基集團(tuán)在DNA 雙鏈大溝中呈特定三維結(jié)構(gòu)?;蚪M中60%~ 90% 的CPG 都被甲基化, 未甲基化的CPG 成簇地組成CPG 島,位于結(jié)構(gòu)基因啟動子的core序列和轉(zhuǎn)錄起始點。有實驗證明超甲基化阻遏轉(zhuǎn)錄的進(jìn)行。DNA 甲基化可引起基因組中相應(yīng)區(qū)域染色質(zhì)結(jié)構(gòu)變化, 使DNA 失去核酶ö限制性內(nèi)切酶的切割位點, 以及DNA 酶的敏感位點, 使染色質(zhì)高度螺旋化, 凝縮成團(tuán), 失去轉(zhuǎn)錄活性。5 位C 甲基化的胞嘧啶脫氨基生成胸腺嘧啶, 由此可能導(dǎo)致基因置換突變, 發(fā)生堿基錯配: T2G, 如果在細(xì)胞分裂過程中不被糾正,就會誘發(fā)遺傳病或cancer, 而且, 生物體甲基化的方式是穩(wěn)定的, 可遺傳的。

DNA甲基化是表觀遺傳修飾的主要方式,能在不改變DNA序列的前提下,改變遺傳表現(xiàn)。為外遺傳編碼(epigenetic code)的一部分,是一種外遺傳機(jī)制。DNA甲基化過程會使甲基添加到DNA分子上,例如在胞嘧啶環(huán)的5'碳上:這種5'方向的DNA甲基化方式可見於所有脊椎動物。在人類細(xì)胞內(nèi),大約有1%的DNA堿基受到了甲基化。在成熟體細(xì)胞組織中,DNA甲基化一般發(fā)生於CpG雙核苷酸(CpG dinucleotide)部位;而非CpG甲基化則於胚胎干細(xì)胞中較為常見。植物體內(nèi)胞嘧啶的甲基化則可分為對稱的CpG(或CpNpG),或是不對稱的CpNpNp形式(C與G是堿基;p是磷酸根;N指的是任意的核苷酸)。特定胞嘧碇受甲基化的情形,可利用亞硫酸鹽定序(bisulfite sequencing)方式測定。DNA甲基化可能使基因沉默化,進(jìn)而使其失去功能。此外,也有一些生物體內(nèi)不存在DNA甲基化作用。全基因組甲基化測序:利用Bisulfite(亞硫酸鹽)對基因組進(jìn)行處理后上機(jī)測序。

亞硫酸氫鈉修飾后測序法是一種對DNA進(jìn)行亞硫酸氫鈉處理、聚合酶鏈反應(yīng)擴(kuò)增與DNA測序相結(jié)合的方法,能夠提供測定區(qū)域的序列信息,準(zhǔn)確定位甲基化胞嘧啶位點;重亞硫酸鹽修飾后,甲基化胞嘧啶保持不變,但非甲基化胞嘧啶轉(zhuǎn)變?yōu)槟蜞奏?,PCR擴(kuò)增后為胸腺嘧啶,其將甲基化狀態(tài)的差異轉(zhuǎn)化成堿基的差異,從而對胞嘧啶的甲基化狀態(tài)進(jìn)行分析;但在亞硫酸鈉處理的酸性環(huán)境下,單鏈特異性PCR模板穩(wěn)定性下降,容易降解;并且模板鏈CG二核苷酸水平高易形成復(fù)雜的二級結(jié)構(gòu),常出現(xiàn)非特異性條帶,結(jié)合“巢式PCR法”能明顯提高擴(kuò)增的特異度。以MethlyC-seq為例,將DNA段化后收集特定長度的片段并修復(fù)DNA末端.南京目標(biāo)區(qū)間甲基化重測序送樣要求

目標(biāo)區(qū)域甲基化重測序(Hi-Methylseq)結(jié)合了亞硫酸鹽轉(zhuǎn)換、靶向擴(kuò)增子高通量測序技術(shù)。北京甲基化重測序怎么解決

DNA去甲基化分為兩類:主動去甲基化(Active DNA Demethylation)和被動去甲基化(Passive DNA Demethylation)。基因組甲基化模式的形成主要依賴于主動去甲基化,主要涉及一類具有DNA去甲基化功能的蛋白,可能存在的五種機(jī)制a. DNA轉(zhuǎn)葡糖基酶參與的堿基切除修復(fù)(base excision repair;BER):5-mC 由DNA 轉(zhuǎn)葡糖基酶直接去除。此途徑主要存在于植物體內(nèi),動物體內(nèi)也可能存在。b.脫氨酶參與的堿基切除修復(fù):5-mC 脫氨變成胸腺嘧啶T,形成G/T 錯配,進(jìn)入BER 途徑。這一途徑主要存在于動物體中,植物體中也可能存在。c.核苷酸外切修復(fù)機(jī)制(nucleotide excision repair;NER):直接移除甲基化的CpG 二核苷酸。d.氧化去甲基化:發(fā)生氧化反應(yīng)打開碳-碳鍵,直接去除甲基基團(tuán)。e.水解去甲基化:水解胞嘧啶的甲基基團(tuán),使其以甲醇的形式被釋放。DNA被動去甲基化是指當(dāng)DNMTs活性被抑制或濃度過低時,無法維持原有的甲基化狀態(tài),使DNA甲基化程度降低的過程,這類去甲基化通常發(fā)生在細(xì)胞復(fù)制的兩個周期之間,涉及到某些可與DNMTs結(jié)合的因子,其結(jié)合后形成的復(fù)合物可以阻止DNMTs與DNA的結(jié)合。北京甲基化重測序怎么解決

上海翼和應(yīng)用生物技術(shù)有限公司是一家第三方檢測服務(wù);生物專業(yè)領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)咨詢、技術(shù)服務(wù);健康衰老評估;大健康檢測;遺傳學(xué)技術(shù)服務(wù);生物醫(yī)藥行業(yè)質(zhì)控檢測技術(shù)技術(shù)服務(wù);小鼠遺傳品系鑒定;轉(zhuǎn)基因小鼠基因型鑒定;細(xì)胞點突變檢測;細(xì)胞端粒長度和端粒酶活性檢測。的公司,致力于發(fā)展為創(chuàng)新務(wù)實、誠實可信的企業(yè)。翼和生物深耕行業(yè)多年,始終以客戶的需求為向?qū)?,為客戶提供高品質(zhì)的細(xì)胞組織小鼠質(zhì)控,大健康檢測,生物技術(shù)服務(wù)。翼和生物致力于把技術(shù)上的創(chuàng)新展現(xiàn)成對用戶產(chǎn)品上的貼心,為用戶帶來良好體驗。翼和生物始終關(guān)注醫(yī)藥健康行業(yè)。滿足市場需求,提高產(chǎn)品價值,是我們前行的力量。