鋰電池過充過放的本質:充電時,鋰離子從正極板脫嵌,通過電解液嵌入到負極板上;放電時,鋰離子從負極板上脫嵌,并經由電解液嵌入到正極板上;鋰離子電池的充放電過程是鋰離子在極板上的嵌入和脫嵌過程。充電時,隨著鋰離子的脫嵌,正極材料體積會發(fā)生一定量的收縮;放電時,隨著鋰離子的嵌入,正極材料體積會發(fā)生一定量的膨脹。過充時,正極晶格會產生崩塌,鋰離子在負極會形成鋰枝晶從而刺破隔膜,造成電池的損壞。過放時,正極材料活性變差,阻止鋰離子的嵌入,電池容量急劇下降。如果發(fā)生正極材料體積過度膨脹,也會破壞電池的物理結構,造成電池的損壞。BMS通過精細的監(jiān)測、保護和優(yōu)化,讓電池在安全的前提下發(fā)揮比較大效能,是連接電池與應用場景的“智能中樞”。BMS通過監(jiān)控電池狀態(tài)(電壓/溫度/SOC/SOH),均衡電芯,防止過充/過放/過熱,延長電池壽命。太陽能板BMS批發(fā)價格
儲能BMS主動均衡和被動均衡的區(qū)別主要有能量的方式、啟動均衡條件、均衡電流、成本等。具體區(qū)別如下:能量的方式:主動均衡-主動采用儲能器件,將荷載較多能量的電芯部分能量轉移到能量較少的電芯上,是能量的轉移。被動均衡運用電阻,將高荷電電量電芯的能量消耗掉,減少不同電芯之間差距,是能量的消耗。啟動均衡條件:只要壓差大于設定值便開始啟動主動均衡,均衡時間一般是24小時都在工作。在電池快接近充滿的電壓下才啟動被動放電均衡,均衡時間一般就幾個小時。均衡電流:主動均衡電流可達1-10A,充放電過程均可實現,均衡效果明顯。被動均衡電流35mA-200mA不等,均衡電流越大,發(fā)熱越嚴重。成本:主動均衡電路復雜,故障率高,成本高。被動均衡軟硬件實現簡單,成本低。隨著電芯制造工藝不斷提升,電芯間的一致性越來越高。出于電路結構和成本考慮,被動均衡的策略目前仍然是市場的主流選擇。 太陽能板BMS批發(fā)價格BMS 常見使用故障有哪些?
基于模型的方法估算電池SOC,包括電化學阻抗頻譜法(EIS)和等效電路模型(ECM),通過模擬電池的電化學反應和電氣行為來進行深入的SOC分析。這些方法可評估內阻、容量和其他關鍵參數,從而多方面了解各種運行條件下的SOC。卡爾曼濾波是另一種流行的基于模型的技術,它能整合來自多個傳感器的數據,即使在動態(tài)環(huán)境中也能精確估算SOC。然而,卡爾曼濾波法的準確性容易受到傳感器漂移、極端溫度變化和電池行為變化等外部因素的影響。大多數電動汽車使用不同的技術組合來準確測量SOC。庫侖計數和OCV迅速獲得基本數據,而EIS、ECM和卡爾曼濾波則提供更詳細和更精確的信息。除此之外,神經網絡,人工智能的應用也在不斷的提高SOC的準確性。
從市場數據來看,BMS市場前景十分廣闊。受益于電動汽車、消費電子等行業(yè)的蓬勃發(fā)展,BMS市場規(guī)模持續(xù)擴張。盡管2020年受全球衛(wèi)生事件影響,全球BMS市場規(guī)模增速有所下滑,但隨著電動汽車市場規(guī)模不斷擴大,以及對電池效率要求日益提高,BMS市場重拾增長態(tài)勢。據BusinessWire估算及前瞻產業(yè)研究院分析,2021年全球BMS市場規(guī)模達億美元,預計到2026年將攀升至131億美元,年復合增長率(CAGR)達15%。其中,電動汽車行業(yè)的迅猛發(fā)展極大推動了BMS的進步,2020年動力電池應用在全球BMS下游應用占比中高達54%。2021年全球汽車電池管理系統BMS市場規(guī)模達億美元,較上一年大幅增長,2022年更是增長至46億美元,預計2023年將達到50億美元。在國內市場,2020年BMS市場需求規(guī)模為97億元,2021年汽車BMS市場規(guī)模達億元,同比增長。預計未來,隨著國內乃至全球電動汽車市場的進一步拓展。 BMS系統保護板能夠確保電池組內各節(jié)電池的壓差不大,提高電池組的充放電性能,使動力輸出更加穩(wěn)定和高效。
主動均衡技術的痛點:設備采購成本較高當前新能源板塊發(fā)展突飛猛進,每個從業(yè)單位參與的項目單量和項目數量越來越多,很多項目前期的方案搭建以及交付投運,較大權重地考慮成本,在剛好滿足下級用戶當前技術需求的前提下,以盡可能便宜的原則選擇均衡產品。導致很多項目選型環(huán)節(jié),下級用戶認可主動均衡的產品和技術,也了解全生命周期主動均衡經濟性的更加合理性,但考慮當前量級的項目因為選擇采購主動均衡BMS要多花¥,往往很可能還是選擇當前就滿足下級用戶的被動均衡產品。主動均衡相對增加了危險點基于不同廠家主動均衡技術的差異性,主動均衡在BMS內部增加了分離式或集成式的均衡電路,其中包括均衡充放電模塊裝置、均衡電源驅動裝置、均衡操作狀態(tài)等,這些從硬件增加的角度增加了可能失效的危險點。部分BMS企業(yè)過于追求3A、5A甚至更高的大電流均衡,于均衡技術本身沒有什么技術難點,但對系統既有的協配件的選型匹配存在挑戰(zhàn)。行業(yè)PACK包內采集線束的線徑可能只有、CCS方案銅膜的載流能力、PACK內的發(fā)熱及散熱、相對熱的環(huán)境下電池的壽命等都可能是關聯影響因素。 可通過專門診斷工具讀取 BMS 故障碼,定位具體問題(如傳感器失效、均衡電路故障)。便攜式戶外電源BMS智能云平臺
對于電池管理系統(BMS)而言,除了均衡功能外,均衡策略的制定同樣至關重要。太陽能板BMS批發(fā)價格
技術層面,BMS正朝著高集成化、智能化與車規(guī)級功能安全方向發(fā)展。無線BMS技術已進入商用階段,通過分布式架構與邊緣計算,實現數據的本地處理,減少傳輸負擔。AI算法的融入使BMS能夠預測電池剩余壽命與潛在故障,提前采取維護措施。例如,機器學習優(yōu)化充放電策略,適配電力現貨市場峰谷套利需求等。應用場景方面,BMS已從電動汽車擴展至儲能系統、便攜式電子設備及航空航天等領域。在智能手機中,微型BMS集成于電路板,側重輕量化與低功耗設計;在航空領域,BMS需滿足高可靠性、冗余設計及極端環(huán)境適應要求。隨著2025年《新型儲能安全技術規(guī)范》的實施,BMS的安全標準進一步升級,消防系統成本占比≥5%,熱失控預警時間≥30分鐘,推動行業(yè)向更安全、更便捷的方向發(fā)展。 太陽能板BMS批發(fā)價格