單分子陣列化技術(shù):磁珠捕獲與信號放大的**支撐,單分子陣列化技術(shù)作為數(shù)字ELISA芯片的底層架構(gòu),通過微米級捕獲結(jié)構(gòu)與二次流原理,實現(xiàn)磁珠的高密度穩(wěn)定捕獲。在芯棄疾單分子芯片中,該技術(shù)使單個芯片承載數(shù)十萬磁珠,每個磁珠作為**反應(yīng)單元,***放大熒光信號,降低背景噪聲。反應(yīng)后磁珠與量子點陣列的協(xié)同作用,進一步提升檢測靈敏度,IL-6檢測中0.2pg/ml的低濃度樣本仍能呈現(xiàn)清晰的熒光信號梯度。該技術(shù)不僅確保了單分子級別的檢測精度,更通過陣列化設(shè)計實現(xiàn)高通量并行反應(yīng),為低豐度蛋白的統(tǒng)計分析提供了充足的數(shù)據(jù)量,成為突破傳統(tǒng)ELISA檢測上限的關(guān)鍵技術(shù),支撐芯片在超敏檢測與多重分析中的優(yōu)異表現(xiàn)。6)數(shù)字化高敏ELISA芯片試劑盒,10ul樣本可同時測2-4個指標;醫(yī)學(xué)實驗室數(shù)字ELISA特點
芯棄疾JX-8B數(shù)字ELISA產(chǎn)品每個生物實驗室都用得起的單分子免疫檢測SiMoA通過將單個酶產(chǎn)生的熒光團限制在極小范圍內(nèi),從而能夠檢測到非常低濃度的酶標記物體積(~50fL),導(dǎo)致熒光產(chǎn)物分子的局部高濃度。為了在免疫測定中實現(xiàn)這種定位,在第二步中,將珠子加載到一個陣列為離散的微升大小的孔(圖1C)。本研究中使用的2毫米寬陣列有~50,000個孔,孔徑為μm,孔深為μm。加載后的陣列在含有熒光酶底物液滴的情況下,用橡膠密封圈密封。Rissin等人,第3頁將每個微球隔離在飛升反應(yīng)室中。具有單一酶的微球標記的免疫復(fù)合物在50飛升的反應(yīng)室中產(chǎn)生局部高濃度的熒光產(chǎn)物(圖1D)。通過使用標準顯微鏡光學(xué)系統(tǒng)獲取陣列的時間變化熒光圖像,可以區(qū)分與單一酶分子相關(guān)的微球(“開啟”孔)和不與酶相關(guān)的微球(“關(guān)閉”孔);顯示了“開啟”和“關(guān)閉”孔的熒光直方圖。成像陣列可以成千上萬的單個免疫復(fù)合物同時檢測。通過測定供試品中的蛋白質(zhì)濃度來確定計算含有珠子和熒光產(chǎn)物的孔數(shù)相對于含有珠子的孔數(shù)。使用SiMoA,濃度是因此,我們稱SiMoA應(yīng)用于檢測單個免疫復(fù)合物為數(shù)字ELISA??蒲袌鼍坝脭?shù)字ELISA快速檢測POCT 芯片卡片式設(shè)計占地小,全自動化操作,適用于院前急救、EICU 等緊急場景。
芯棄疾JX-8B數(shù)字ELISA,每個生物/醫(yī)學(xué)實驗室都用得起的單分子免疫檢測;
單分子的檢測原理:由Simoa數(shù)字免疫分析法實現(xiàn)的超靈敏度已在先前討論過。簡而言之,類似免疫分析中的酶-底物反應(yīng)是在相對較大的反應(yīng)體積(50-100μL)中進行的,在信號生成步驟中稀釋了產(chǎn)物分子。信號分子的擴散和稀釋將靈敏度限制在皮摩爾范圍內(nèi)。相比之下,Simoa通過將單獨標記的免疫復(fù)合物和底物限制在飛升大小的孔中,從而限制了熒光產(chǎn)物分子從酶-底物反應(yīng)中的擴散。當單一酶標簽催化底物轉(zhuǎn)化為熒光產(chǎn)物時,產(chǎn)生的熒光團被限制在孔中,從而在短時間內(nèi)產(chǎn)生可測量的熒光信號。
磁珠陣列化反應(yīng)的信號處理優(yōu)勢:磁珠陣列化反應(yīng)作為數(shù)字ELISA芯片的**環(huán)節(jié),通過量子點標記與熒光共振能量轉(zhuǎn)移(FRET)技術(shù),實現(xiàn)信號的指數(shù)級放大。在IL-6檢測中,每個磁珠捕獲的抗原-抗體復(fù)合物攜帶多個量子點,單個熒光事件的信號強度較傳統(tǒng)ELISA提升10倍以上,使0.5pg/ml的低濃度樣本仍能產(chǎn)生***的熒光響應(yīng)。信號處理軟件通過多視場拼接與背景噪聲扣除算法,進一步提升信噪比,確保弱陽性樣本的準確識別。這種“信號放大+智能處理”的雙重機制,使芯片在接近檢測極限的濃度區(qū)間仍能保持良好的線性關(guān)系,為臨界值樣本的精細判斷提供了技術(shù)保障。具有以下特點: 多重、超敏、微量、極速 靈活、開放!
超多重檢測的臨床數(shù)據(jù)價值:標記物組合的精細篩選,超多重檢測芯片通過21項指標的同步檢測,為疾病診斷提供了多維數(shù)據(jù)支持。在肺*普查中,同時分析29種標記物的表達模式,可構(gòu)建特異性>80%的三聯(lián)檢測模型(如CEA+SA+CA242),較單一指標檢測準確率提升40%。在炎癥反應(yīng)評估中,IL-6、IL-8、TNF-α等多因子聯(lián)合分析,可精細判斷***類型與嚴重程度,指導(dǎo)個體化治療方案。該芯片的高通量特性還支持大規(guī)模隊列研究,通過機器學(xué)習(xí)算法挖掘標記物組合的潛在關(guān)聯(lián),為精細醫(yī)療中的生物標志物發(fā)現(xiàn)提供了強大的數(shù)據(jù)分析基礎(chǔ),推動檢測技術(shù)從單一指標診斷向多維度精細分型升級。多指標高通量數(shù)字 ELISA 芯片單個樣本可測 2-8 個指標,片內(nèi)反應(yīng)檢測推動設(shè)備小型化。IVD數(shù)字ELISA易用性
芯棄疾JX-8B單分子小型化ELISA檢測產(chǎn)品,每個生物實驗室都能用的單分子檢測;醫(yī)學(xué)實驗室數(shù)字ELISA特點
芯棄疾JX-8B數(shù)字ELISA高敏檢測產(chǎn)品;具有以下特點:多重、超敏微量、極速靈活、開放;
只有少量分泌蛋白可測量的可能性突顯了蛋白質(zhì)測量領(lǐng)域面臨的挑戰(zhàn):
醫(yī)學(xué)上相關(guān)的生物標志物可能存在于非常低的豐度中。免疫測定仍然是是蛋白質(zhì)生物標志物敏感和特異性測量的基礎(chǔ)。然而,傳統(tǒng)的免疫分析技術(shù)在檢測不可測量的生物標志物時靈敏度不足,這些生物標志物肯定位于當前可檢測范圍之下。主流的傳統(tǒng)免疫分析方法——包括酶聯(lián)免疫吸附試驗(ELISA)、化學(xué)發(fā)光和電化學(xué)發(fā)光——的靈敏度下限約為10^-13M(~<0.1pM)。許多降低靈敏度的方法已被描述,包括拉曼增強信號檢測、電感耦合等離子體質(zhì)譜,但這些方法的數(shù)據(jù)表明其成功有限。非常規(guī)方法如亞飛摩爾級檢測具有明顯的權(quán)衡,例如程序較長或無法提供定量答案。 醫(yī)學(xué)實驗室數(shù)字ELISA特點