電極氧化反應遵循電化學熱力學原理,可用能斯特方程描述電極電位與反應物濃度的關系。以鐵電極為例,其氧化反應Fe→Fe2?+2e?的標準電極電位為-0.44V(vs SHE)。當系統(tǒng)電位超過該值,熱力學上即可發(fā)生自發(fā)氧化。在實際水系統(tǒng)中,溶解氧的存在會顯著提高氧化電位,例如O?+2H?O+4e?→4OH?反應的標準電位達+0.40V,二者耦合構成腐蝕電池。溫度每升高10℃,氧化反應速率通常提高1.5-2倍,這對高溫循環(huán)水系統(tǒng)的電極選材提出更高要求。電化學技術使生物膜厚度從500μm降至50μm。黑龍江海水淡化電極除硬系統(tǒng)
電極電氧化是一種通過陽極表面直接或間接氧化降解污染物的電化學技術。其機制包括兩種路徑:一是污染物在陽極表面直接失去電子(直接氧化),二是陽極生成強氧化性活性物種(如羥基自由基·OH、活性氯等)引發(fā)間接氧化。以硼摻雜金剛石(BDD)電極為例,其寬電位窗口(>2.5 V vs. SHE)可高效產生·OH,實現(xiàn)有機物的完全礦化。典型反應中,有機物(R)被氧化為CO?和H?O:R + ·OH → CO? + H?O + 其他產物。此外,電解質類型明顯影響反應路徑:含Cl?介質中會生成HClO/ClO?,而SO?2?介質則依賴·OH主導氧化。該技術的效率由電流密度、電極材料、pH值和傳質條件共同決定,需通過優(yōu)化參數平衡降解速率與能耗。吸收塔電極除硬電化學阻垢劑再生復用次數達10次。
工作電極主要用于研究電化學反應的實驗,研究人員期望在該電極上發(fā)生所關注的特定電化學反應。對于工作電極,有諸多要求。它可以是固體,也可以是液體,各類能導電的固體材料基本都能作為工作電極。同時,所研究的電化學反應不能受電極自身其他反應的干擾,并且要能在較寬的電位區(qū)域內進行測定,還必須保證電極不與溶劑或電解液組分發(fā)生反應。常見的 “惰性” 固體電極材料如玻碳、鉑、金等常被選用,以滿足實驗需求。
醫(yī)用電極在醫(yī)療領域發(fā)揮著重要作用,以心電圖機為例,電極需要被準確放置在患者皮膚上,用于檢測心臟的電活動。心臟在跳動過程中會產生微弱的電信號,這些信號通過皮膚傳導到電極上,電極將其收集并傳輸到心電圖機中,經過處理后形成心電圖,醫(yī)生依據心電圖的波形特征,能夠判斷患者心臟的健康狀況,檢測是否存在心律失常、心肌缺血等心臟疾病,為臨床診斷提供關鍵依據,在心血管疾病的診斷中具有不可替代的地位。
循環(huán)水中的鈣鎂離子易形成碳酸鈣和硫酸鈣垢,電化學除垢技術通過陰極反應(2H?O + 2e? → H?↑ + 2OH?)提高局部pH,促使成垢離子(Ca2?、Mg2?)以疏松形式析出并隨排污水排除。采用網狀不銹鋼陰極時,垢層主要成分為文石型CaCO?(非粘附性),可通過自動刮垢裝置清洗。關鍵參數包括電流密度(10-30 mA/cm2)、水溫(<60℃)和停留時間(>30分鐘)。某電廠循環(huán)水系統(tǒng)應用后,換熱管結垢速率從3 mm/年降至0.5 mm/年,同時節(jié)水15%(減少排污量)。該技術的瓶頸在于高硬度水質(>500 mg/L CaCO?)時能耗上升,需配合水質軟化預處理。電化學-超濾耦合工藝使回用率達90%。
電鍍法也是制備鈦電極的重要手段。在電鍍過程中,將鈦基體作為陰極,浸入含有活性金屬離子的電鍍液中,通過施加合適的電流密度,使活性金屬離子在鈦基體表面還原沉積,形成活性涂層。例如,在制備鈦基貴金屬電極時,可以采用電鍍法將金、鉑等貴金屬沉積在鈦基體表面。電鍍法能夠精確控制涂層的厚度和成分,制備出具有均勻涂層的鈦電極。同時,通過調整電鍍液的配方和電鍍工藝參數,還可以制備出具有特殊結構和性能的涂層,滿足不同的應用需求 。電極技術處理循環(huán)水無藥劑殘留。湖南循壞水電極設備
電化學-膜技術實現(xiàn)循環(huán)水零排放。黑龍江海水淡化電極除硬系統(tǒng)
電極的制備工藝對其電化學性能至關重要。以鈦基涂層電極為例,典型制備流程包括基體預處理(噴砂、酸蝕)、涂層溶液配制(如RuCl?和IrCl?的混合溶液)和熱分解氧化(多次涂覆-燒結循環(huán))。溶膠-凝膠法可制備均勻的納米氧化物涂層,而電沉積法則適合精確控制貴金屬(如Pt)的負載量。關鍵挑戰(zhàn)在于涂層與基體的結合力不足導致的剝落問題,可通過引入中間層(如Ta?O?)或等離子噴涂技術改善。此外,新興的原子層沉積(ALD)技術能實現(xiàn)單原子級精度,用于制備超薄、高活性電極涂層。黑龍江海水淡化電極除硬系統(tǒng)